留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟现实的网联环境下驾驶人自由换道行为特征与安全分析

钱泽昊 潘新福 范欣炜 严欣 柯巍 王顺超

钱泽昊, 潘新福, 范欣炜, 严欣, 柯巍, 王顺超. 基于虚拟现实的网联环境下驾驶人自由换道行为特征与安全分析[J]. 交通信息与安全, 2024, 42(2): 36-48. doi: 10.3963/j.jssn.1674-4861.2024.02.004
引用本文: 钱泽昊, 潘新福, 范欣炜, 严欣, 柯巍, 王顺超. 基于虚拟现实的网联环境下驾驶人自由换道行为特征与安全分析[J]. 交通信息与安全, 2024, 42(2): 36-48. doi: 10.3963/j.jssn.1674-4861.2024.02.004
QIAN Zehao, PAN Xinfu, FAN Xinwei, YAN Xin, KE Wei, WANG Shunchao. Characteristics and a Safety Analysis of Driver's Free Lane-changing Behavior in a Virtual Reality-based Connected Environment[J]. Journal of Transport Information and Safety, 2024, 42(2): 36-48. doi: 10.3963/j.jssn.1674-4861.2024.02.004
Citation: QIAN Zehao, PAN Xinfu, FAN Xinwei, YAN Xin, KE Wei, WANG Shunchao. Characteristics and a Safety Analysis of Driver's Free Lane-changing Behavior in a Virtual Reality-based Connected Environment[J]. Journal of Transport Information and Safety, 2024, 42(2): 36-48. doi: 10.3963/j.jssn.1674-4861.2024.02.004

基于虚拟现实的网联环境下驾驶人自由换道行为特征与安全分析

doi: 10.3963/j.jssn.1674-4861.2024.02.004
基金项目: 

国家自然科学基金项目 52272331

江苏省科技项目 BE2021067

甘肃省省科技计划项目 22CX3GA067

企业自主立项科技项目aaa 2023-XFZ-03

详细信息
    作者简介:

    钱泽昊(1999-), 硕士研究生. 研究方向: 智能交通、交通控制. E-mail: qianzehao2021@163.com

    通讯作者:

    王顺超(1991-), 博士后, 助理研究员. 研究方向: 车路协同控制等. E-mail: wangshunchao@seu.edu.cn

  • 中图分类号: U491

Characteristics and a Safety Analysis of Driver's Free Lane-changing Behavior in a Virtual Reality-based Connected Environment

  • 摘要: 传统驾驶模拟器难以精确模拟车联网环境中的复杂交互,如车速变化和车道变更。而连接虚拟现实(virtual reality,VR)的驾驶模拟器可以通过先进的传感器和实时数据处理,更逼真地还原车辆物理特性、交通流动态及实际道路环境。采用虚拟现实设备和驾驶模拟器,深入探索网联环境下的驾驶人自由换道行为与安全特征。基于交通仿真和三维建模技术搭建驾驶人自由换道实验系统,并建立自由换道场景库,进而开展驾驶人自由换道行为实验;基于广义估计方程建立驾驶人换道的间距选择模型和换道时间模型;基于加速失效模型分析网联环境对驾驶人自由换道行为的安全影响。研究结果表明:①网联环境下,女性驾驶人的自由换道间距与时间更长,年轻驾驶人的自由换道间距与时间更短;②每提高1 m/s2的加速度噪声,自由换道时的碰撞风险降低28%,每提高1 m的自由换道间距,自由换道时的碰撞风险增加1.1%;③年龄较大的驾驶人自由换道安全性更高,其中,中老年驾驶人(>40岁)自由换道时的碰撞时间(time-to-collision,TTC)比青年驾驶人(>27~40岁)、年轻驾驶人(>18~27岁)分别高38.3%,64.3%;④女性驾驶人比男性驾驶人自由换道安全性更高,女性驾驶人自由换道时的TTC比男性驾驶人高20.1%。与普通环境相比:①驾驶人在网联环境下自由换道间距增加1.16 m、换道时间增加2.41 s、换道安全水平提高19.72%;②自由换道事故发生概率随着碰撞风险持续时间增加而降低,其中,碰撞风险持续时间为1,2,3,4 s时,网联环境下的自由换道事故发生概率比普通环境下分别低5.8%,17.2%,14.4%,3.0%,且该概率在不同性别、年龄的驾驶人自由换道中差异显著。

     

  • 图  1  基于Unity的交通场景融合建模

    Figure  1.  Traffic scene fusion modeling based on Unity

    图  2  实验系统效果图

    Figure  2.  Experimental system effect diagram

    图  3  自由换道实验示意图

    Figure  3.  Lane-changing experiment diagram

    图  4  驾驶人换道行为实验流程图

    Figure  4.  Driver Lane-changing Behavior Experiment Process Diagram

    图  5  驾驶人换道实验示例

    Figure  5.  Example of driver lane-changing experiment

    图  6  自由换道指标数据配对t检验

    Figure  6.  Paired t-test for free lane-changing indicators

    图  7  年龄与驾龄直方图

    Figure  7.  Age and driving experience diagram

    图  8  自由换道不同驾驶状态的生存曲线

    Figure  8.  The survival curves of free lane-changing under different driving conditions

    图  9  自由换道不同年龄驾驶人的生存曲线

    Figure  9.  The survival curves of free lane-changing for different age groups

    图  10  自由换道不同性别驾驶人的生存曲线

    Figure  10.  The survival curves of free lane-changing for different genders

    表  1  20号实验者换道实验数据

    Table  1.   The lane-changing experiment data from participant number 20

    速度(/km/h) 普通环境 41
    速度(/km/h) 普通环境 41
    网联环境 43
    当前车道前车间距/m 普通环境 45
    网联环境 51
    加速度噪声(/m/s) 普通环境 0.9
    网联环境 0.8
    目标车道后车间距/m 普通环境 33
    网联环境 30
    距离冲突时间TTC/s 普通环境 5
    网联环境 7
    换道持续时间/s 普通环境 7
    网联环境 8
    下载: 导出CSV

    表  2  广义估计方程的自变量统计

    Table  2.   Explanatory variables statistics for generalized estimating equations

    指标 变量 变量赋值 计数 占比/%
    驾驶状态 普通环境 普通环境为1,否则为0 51 50.0
    网联环境 网联环境为1,否则为0 51 50.0
    速度(/km/h) 在换道行为期间的平均速度
    驾驶参数 加速度噪声/(m/s) 换道开始点至执行点间的加速度标准差
    换道间距选择/% 实验者选择换道间隙的情况
    年龄/岁 >18~27(年轻) 实验者是年轻为1,否则为0 18 25.3
    >27~40(青年) 实验者是青年为1,否则为0 26 51.0
    > 40(中老年) 实验者是中老年为1,否则为0 7 13.7
    性别 实验者性别男为1,否则为0 32 62.7
    实验者性别女为1,否则为0 19 37.3
    下载: 导出CSV

    表  3  自由换道GEE间距选择模型分析结果

    Table  3.   The analysis results of the GEE model for free lane-changing distance selection

    模型 变量 系数Wald卡方值 显著性
    间距选择模型 常数 3.08 219.25 < 0.001
    网联环境(参照:普通环境) 1.16 5.64 0.013
    速度 0.08 26.39 0.052
    加速度噪声 -0.19 5.26 0.038
    年龄:年轻(参照:青年) -0.17 4.18 < 0.001
    年龄:中老年(参照:青年) 0.23 4.02 0.036
    性别:女(参照:男) 0.15 3.97 0.029
    Alpha 0.26
    下载: 导出CSV

    表  4  自由换道GEE换道时间模型分析结果

    Table  4.   The analysis results of the GEE lane-changing time model for free lane-changing

    模型 变量 系数 Wald卡方值显著性
    换道时间模型 常数 3.92 7.03 0.009
    网联环境(参照:普通环境) 2.41 5.94 0.014
    速度 0.15 4.06 0.038
    换道间距 0.04 8.82 0.005
    年龄:年轻(参照:青年) -1.97 3.79 0.047
    年龄:中老年(参照:青年) 3.41 14.05 < 0.001
    性别:女(参照:男) 2.54 4.63 0.06
    Alpha 0.46
    下载: 导出CSV

    表  5  自由换道加速失效模型拟合结果

    Table  5.   The fitting results of the free lane-changing acceleration failure model

    变量 系数 z 显著性exp(β) exp(β) 95%置信区间
    上限 下限
    常数 0.49 2.16 0.026 / / /
    网联环境 0.18 1.98 0.042 1.23 1.846 2.108
    加速度噪声 -0.22 -2.39 0.031 0.69 1.857 2.063
    换道间距 0.011 4.15 0.004 1.03 1.792 2.034
    年龄:年轻 -0.23 2.14 0.027 0.78 1.814 2.036
    年龄:中老年 0.32 2.39 0.022 1.34 1.773 2.139
    性别:男 -0.19 -2.13 0.031 0.81 1.876 2.043
          P 3.16 0.875 3.065
          θ 0.73 1.856 2.084
        LL(0) -72.36
        $ L L(\hat{\beta})$ -42.58
    似然比统计 57.13
    AIC 93
    下载: 导出CSV
  • [1] SHAWKY M. Factors affecting lane change crashes[J]. IATSS Research, 2020, 44(2): 155-161. doi: 10.1016/j.iatssr.2019.12.002
    [2] 陈峥, 张玉果, 沈世全, 等. 城市郊区道路跟车条件下智能网联汽车速度规划[J]. 中国公路学报, 2023, 36(6): 298-310.

    CHEN Z, ZHANG Y G, SHEN S Q, et al. Speed planning for intelligent connected vehicles under car-following conditions on suburban roads[J]. China Journal of Highway and Transport, 2023, 36(6): 298-310. (in Chinese)
    [3] 王云泽, 李英杰, 唐立. 交通运输从业者对自动驾驶接受度建模与分析[J]. 交通运输工程与信息学报, 2023, 21(2): 42-54.

    WANG Y Z, LI Y J, TANG L. Modeling and analysis of the acceptance of autonomous driving by transportation practitioners[J]. Journal of Transportation Engineering and Information, 2023, 21(2): 42-54. (in Chinese)
    [4] 翟俊达, 鲁光泉, 陈发城, 等. 城市交叉口车路网联信息对青年驾驶人驾驶行为的影响分析[J]. 交通信息与安全, 2022, 40(1): 126-134. doi: 10.3963/j.jssn.1674-4861.2022.01.015

    ZHAI J D, LU G Q, CHEN F C, et al. Effects of information from connected vehicles and infrastructure on driving behavior of young drivers at urban intersections[J]. Journal of Transport Information and Safety, 2022, 40(1): 126-134. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.015
    [5] GIPPS P G. A model for the structure of lane-changing decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414. doi: 10.1016/0191-2615(86)90012-3
    [6] WU J, BRACKSTONE M, MCDONALD M. Fuzzy sets and systems for a motorway microscopic simulation model[J]. Fuzzy Sets and Systems, 2000, 116(1): 65-76. doi: 10.1016/S0165-0114(99)00038-X
    [7] ZHENG Z. Recent developments and research needs in modeling lane changing[J]. Transportation Research Part B: Methodological, 2014, 60(11): 16-32.
    [8] PAN T L, LAM W H K, SUMALEE A, et al. Modeling the impacts of mandatory and discretionary lane-changing maneuvers[J]. Transportation Research Part C: Emerging Technologies, 2016, 68(5): 403-424.
    [9] JULA H, KOSMATOPOULOS E B, IOANNOU P A. Collision avoidance analysis for lane changing and merging[J]. IEEE Transactions on Vehicular Technology, 2000, 49(6): 2295-2308. doi: 10.1109/25.901899
    [10] NARANJO J E, GONZÁLEZ C, GARCÍA R, et al. Cooperative throttle and brake fuzzy control for ACC + Stop & Go maneuvers[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 1623-1630. doi: 10.1109/TVT.2007.897632
    [11] BARMPOUNAKIS E N, VLAHOGIANNI E I, GOLIAS J C. Decision trees and meta-algorithms for revealing powered two wheelers' overtaking patterns[R]. Washington, D.C. Transportation Research Board, 2017.
    [12] 周红媚, 孙叶, 徐秀娟. 基于随机效用理论的城市道路车辆自由换道行为研究[J]. 交通运输研究, 2017, 3(2): 9-16.

    ZHOU H M, SUN Y, XU X J. Behavior of discretionary lane changing on urban streets based on random utility theory[J]. Transportation Research, 2017, 3(2): 9-16. (in Chinese)
    [13] 王婉秋, 肖凌云, 马明辉, 等. 基于NSGA_Ⅱ的双车道公路弯道驾驶人模型[J]. 公路交通科技, 2021, 38(12): 131-138, 146.

    WANG W Q, XIAO L Y, MA M H, et al. Driver models in curves of two-lane highway based on NSGA_Ⅱ[J]. Journal of Highway and Transportation Research and Development, 2021, 38(12): 131-138, 146. (in Chinese)
    [14] 田勇达. 混流环境下网联车辆换道模型研究[D]. 长春: 吉林大学, 2020.

    TIAN Y D. Research on lane change model of connected vehicles in mixed traffic environments[D]. Changchun: Jilin University, 2020. (in Chinese)
    [15] 刘怿轩, 张慧永, 王猛, 等. 跟驰自动驾驶车时人驾车行为研究: 实证与建模[J]. 交通运输工程与信息学报, 2023, 21 (2): 14-28.

    LIU Y X, ZHANG H Y, WANG M, et al. Study on human driving behavior during car-following autonomous driving: empirical and modeling[J]. Journal of Transportation Engineering and Information, 2023, 21(2): 14-28. (in Chinese)
    [16] 张顺, 陈焕明, 孙腾超. 车联网环境与传统环境下智能车辆换道博弈模型[J]. 汽车实用技术, 2024, 49(9): 35-42.

    ZHANG S, CHEN H M, SUN T C. Lane-changing game model of intelligent vehicle in vehicle networking environment and traditional environment[J]. Automobile Technology, 2024, 49(9): 35-42. (in Chinese)
    [17] 涂辉招, 李振飞, 孙立军. 驾驶模拟器运动系统对自由驾驶行为的影响分析[J]. 同济大学学报(自然科学版), 2015, 43 (11): 1696-1702.

    TU H Z, LI Z F, SUN L J. Analysis of the impact of driving simulator motion systems on free driving behavior[J]. Journal of Tongji University(Natural Science), 2015, 43(11): 1696-1702. (in Chinese)
    [18] SHARMA A, ALI Y, SAIFUZZAMAN M, et al. Human factors in modelling mixed traffic of traditional, connected, and automated vehicles[C]. International Conference on Applied Human Factors and Ergonomics, Los Angeles, USA: Springer International Publishing, 2018.
    [19] ALI Y, ZHENG Z, HAQUE M M. Connectivity's impact on mandatory lane-changing behaviour: Evidences from a driving simulator study[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 292-309. doi: 10.1016/j.trc.2018.06.008
    [20] LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 81-90. doi: 10.1109/TITS.2011.2178836
    [21] RUDIN-BROWN C M, NOY Y I. Investigation of behavioral adaptation to lane departure warnings[J]. Transportation Research Record, 2002, 1803(1): 30-37. doi: 10.3141/1803-05
    [22] RUDIN-BROWN, C, JAMSON, S. Behavioural adaptation and road safety: theory, evidence and action[M]. Boca Raton: CRC Press, 2013.
    [23] ALI Y, ZHENG Z, HAQUE M M, et al. Understanding the discretionary lane-changing behaviour in the connected environment[J]. Accident Analysis & Prevention, 2020, 137: 105463.
    [24] ADELL E, VÁRHELYI A, DALLA FONTANA M. The effects of a driver assistance system for safe speed and safe distance-a real-life field study[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(1): 145-155. doi: 10.1016/j.trc.2010.04.006
    [25] SAFFARIAN M, DE WINTER J C F, HAPPEE R. Enhancing driver car-following performance with a distance and acceleration display[J]. IEEE Transactions on Human-machine Systems, 2012, 43(1): 8-16.
    [26] MONTGOMERY J, KUSANO K D, GABLER H C. Age and gender differences in time to collision at braking from the 100-car naturalistic driving study[J]. Traffic Injury Prevention, 2014, 15(1): 15-20.
    [27] LI Y, LI Z, WANG H, et al. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways[J]. Accident Analysis & Prevention, 2017, 104: 137-145.
    [28] LI Y, WANG H, WANG W, et al. Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways[J]. Accident Analysis & Prevention, 2017, 98: 87-95.
    [29] GU X, ABDEL-ATY M, XIANG Q, et al. Utilizing UAV video data for in-depth analysis of drivers' crash risk at interchange merging areas[J]. Accident Analysis & Prevention, 2019, 123: 159-169.
    [30] YOUNG K L, REGAN M A, MITSOPOULOS E. Acceptability to young drivers of in-vehicle intelligent transport systems[J]. Road & Transport Research, 2004, 13(2): 6-7.
    [31] DONMEZ B, BOYLE L N, LEE J D, et al. Drivers'attitudes toward imperfect distraction mitigation strategies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2006, 9(6): 387-398. doi: 10.1016/j.trf.2006.02.001
    [32] GISH J A, GRENIER A, VRKLJAN B, et al. Older people driving a high-tech automobile: Emergent driving routines and new relationships with driving[J]. Canadian Journal of Communication, 2017, 42(2): 235-236. doi: 10.22230/cjc.2017v42n2a3125
    [33] LI G, EBEN LI S, CHENG B. Field operational test of advanced driver assistance systems in typical Chinese road conditions: the influence of driver gender, age and aggression[J]. International Journal of Automotive Technology, 2015, 16(5): 739-750. doi: 10.1007/s12239-015-0075-5
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  114
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-10
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回