留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进YOLOv7的码头作业人员检测算法

张孝杰 张艳伟 邹鹰 尹学成 程祈文 沈汝超

张孝杰, 张艳伟, 邹鹰, 尹学成, 程祈文, 沈汝超. 基于改进YOLOv7的码头作业人员检测算法[J]. 交通信息与安全, 2024, 42(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2024.02.007
引用本文: 张孝杰, 张艳伟, 邹鹰, 尹学成, 程祈文, 沈汝超. 基于改进YOLOv7的码头作业人员检测算法[J]. 交通信息与安全, 2024, 42(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2024.02.007
ZHANG Xiaojie, ZHANG Yanwei, ZOU Ying, YIN Xuecheng, CHENG Qiwen, SHEN Ruchao. An Improved YOLOv7 Algorithm for Workers Detection in Port Terminals[J]. Journal of Transport Information and Safety, 2024, 42(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2024.02.007
Citation: ZHANG Xiaojie, ZHANG Yanwei, ZOU Ying, YIN Xuecheng, CHENG Qiwen, SHEN Ruchao. An Improved YOLOv7 Algorithm for Workers Detection in Port Terminals[J]. Journal of Transport Information and Safety, 2024, 42(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2024.02.007

基于改进YOLOv7的码头作业人员检测算法

doi: 10.3963/j.jssn.1674-4861.2024.02.007
基金项目: 

国家科技重大专项项目 2022ZD0119303

详细信息
    作者简介:

    张孝杰(1999-), 硕士研究生. 研究方向: 港口安防、计算机视觉等. E-mail: zhangxiaojie0220@163.com

    通讯作者:

    张艳伟(1977-), 博士, 副教授. 研究方向: 智慧港口、智能决策与算法等. E-mail: zywtg@whut.edu.cn

  • 中图分类号: TP391.4;U698.5

An Improved YOLOv7 Algorithm for Workers Detection in Port Terminals

  • 摘要: :广角监控图像中人员目标检测对于码头智能安防具有重要意义。针对传统YOLOv7算法在码头广角监控图像识别中,存在小目标特征提取能力弱、人员检测准确率低等问题,研究了基于改进YOLOv7的码头作业人员检测算法。为提升人员目标多尺度特征的检测性能及鲁棒性,设计了平衡码头人员分类与定位任务的上下文解耦(task-specific context decoupling,TSCODE)结构并联合聚集-分发机制(gather-and-distribute,GD),增强网络多尺度特征融合能力;为增强网络对作业人员等小目标的特征提取能力,在主干网络末端引入了基于双层路由注意力机制(bi-level routing attention,BRA)的视觉transformer模型(BRA-ViT),捕捉小目标人员的位置、方向与跨通道等信息;为提升检测速度并保持检测精度,提出了基于slim-neck的颈部层网络轻量化方法,降低参数量与计算量;为降低漏检率与误检率,引入了基于最小点距离的交并比损失函数(minimum-point-distance-based intersection over union,MPDIoU)计算边界框的坐标预测损失,提升边界框回归的准确性与计算效率。为验证算法效果,采集白天、夜晚不同时段下码头前沿、堆场、卡口等场景的广角监控图像,构造标注数据集并设计消融与对比实验。实验结果显示:所提算法对码头作业人员检测的平均准确率为90.6%,平均检测速度为39 fps;与Faster R-CNN、SSD、YOLOv3、YOLOv5、YOLOv7、YOLOv8等算法相比,其平均准确率分别提升了13.8%、15.8%、8.5%、5.2%、2.7%和3.5%,平均检测速度与基准YOLOv7算法性能相当。所提算法对码头作业人员识别具有较高的检测精度与检测速度,满足码头安防场景中作业人员检测准确性与实时性的要求。

     

  • 图  1  改进的YOLOv7网络结构

    Figure  1.  Network structure of improved YOLOv7

    图  2  TSCODE结构

    Figure  2.  Structure of TSCODE

    图  3  GD分支部署

    Figure  3.  Deployment of GD

    图  4  BiFormer模块

    Figure  4.  BiFormer module

    图  5  SPPCSPC_BRA模块

    Figure  5.  SPPCSPC_BRA module

    图  6  GSConv与VoV-GSCSP结构

    Figure  6.  Structure of GSConv and VoV-GSCSP

    图  7  slim-neck结构

    Figure  7.  Structure of slim-neck

    图  8  码头作业人员数据集部分图像示例

    Figure  8.  Partial images of the terminal's workers dataset

    图  9  模型训练曲线图

    Figure  9.  Curve diagram of model training

    图  10  YOLOv7与改进YOLOv7检测对比

    Figure  10.  Comparison of YOLOv7 and improved YOLOv7 detection

    表  1  码头作业人员数据集统计数据

    Table  1.   Statistical data of the terminal's workers dataset

    类别 子类别 数量/个
    场景 码头前沿 978
    堆场 639
    仓库 43
    卡口 452
    时间 白天 1 711
    夜晚 401
    目标类型 大目标 923
    中目标 288
    小目标 3 930
    下载: 导出CSV

    表  2  改进的YOLOv7算法消融实验结果

    Table  2.   Ablation experimental results of improved YOLOv7 algorithm

    组别 TSCODE BiFormer GD slim-neck MPDIoU Params/M FLOPs/G AP/%
    1 37.2 105.1 87.9
    2 55.5 121.3 89.6
    3 38.3 105.1 88.6
    4 40.7 109.0 89.3
    5 25.9 42.9 88.9
    6 37.2 105.1 88.5
    7 56.6 121.3 89.9
    8 60.1 125.3 90.3
    9 55.1 113.3 90.2
    10 55.1 113.3 90.6
    下载: 导出CSV

    表  3  不同目标检测算法实验结果对比

    Table  3.   Comparison of experimental results of different object detection algorithms

    检测算法 AP/% FPS/(f/s)
    Faster R-CNN 76.8 5
    SSD 74.8 32
    YOLOv3 82.1 38
    YOLOv5 85.4 43
    YOLOv7 87.9 41
    YOLOv8 87.1 44
    本文算法 90.6 39
    下载: 导出CSV
  • [1] 雷富成, 黄同, 陈俊宏. 基于事故致因理论的港口事故因素统计分析及安全管理[J]. 珠江水运, 2024(1): 64-67.

    LEI F C, HUANG T, CHEN J H, et al. Statistical analysis of port accident factors and safety management based on accident causation theory[J]. Pearl River Water Transport, 2024 (1): 64-67. (in Chinese)
    [2] KAUR R, SINGH S. A comprehensive review of object detection with deep learning[J]. Digital Signal Processing, 2023, 132: 103812. doi: 10.1016/j.dsp.2022.103812
    [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH: IEEE, 2014.
    [4] GIRSHICK R. Fast r-cnn[C]. 2015 IEEE International Conference on Computer Vision(ICCV), Santiago, Chile: IEEE, 2015.
    [5] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[C]. 28th International Conference on Neural Information Proceeding System, Montreal, Canada: MIT Press, 2015.
    [6] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector[C]. 14th European Conference on Computer Vision(ECCV), Amsterdam, Netherlands: Springer, 2016.
    [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA: IEEE, 2016.
    [8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Vancouver, Canada: IEEE, 2023.
    [9] 马浩为, 张笛, 李玉立, 等. 基于改进YOLOv5的雾霾环境下船舶红外图像检测算法[J]. 交通信息与安全, 2023, 41 (1): 95-104. doi: 10.3963/j.jssn.1674-4861.2023.01.010

    MA H W, ZHANG D, LI Y L, et al. A ship detection for infrared images under hazy environment based on an improved YOLOv5 algorithm[J]. Journal of Transport Information and Safety, 2023, 41(1): 95-104. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.010
    [10] ZHAO J, CHEN C, WANG W. Port container detection in foggy weather scenarios based on YOLOv5[C]. International Conference on Artificial Intelligence in China, Baishan, China: Springer Nature, 2023.
    [11] 王曼菲, 李志明. 基于深度学习的港口移动目标识别技术研究[J]. 中国水运, 2022(10): 59-60.

    WANG M F, LI Z M. Research on port moving target recognition technology based on deep learning[J]. China Water Transport, 2022(10): 9-60. (in Chinese)
    [12] XU X, CHEN X, WU B, et al. Exploiting high-fidelity kinematic information from port surveillance videos via a YOLO-based framework[J]. Ocean & Coastal Management, 2022, 222: 106117.
    [13] 郭晓晗, 彭理群, 马定辉. 基于车联网BSM数据与路侧视频融合的港口集装箱卡车碰撞危险辨识方法[J]. 交通信息与安全, 2023, 41(1): 1-12. doi: 10.3963/j.jssn.1674-4861.2023.01.001

    GUO X H, PENG L Q, MA D H. A method of identifying collision risk of container trucks in port terminal areas under an integrated connected vehicle BSM and roadside video surveillance data[J]. Journal of Transport Information and Safety, 2023, 41(1): 1-12. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.001
    [14] 张旭仁, 高力. 基于人工智能图像识别的散货码头天网智慧平台[J]. 港口科技, 2021(6): 25-32.

    ZHANG X R, GAO L. Skynet intelligent platform for bulk cargo terminal based on artificial intelligence image recognition[J]. Port Science & Technology, 2021(6): 25-32. (in Chinese)
    [15] 赵芷嫣, 孙维维. 虚拟电子围栏在危货港口安防中的应用[J]. 水上消防, 2021(6): 12-15.

    ZHAO Z Y, SUN W W. Application of virtual electronic fence in dangerous cargo port security[J]. Maritime Safety, 2021(6): 12-15. (in Chinese)
    [16] 陈信强, 郑金彪, 凌峻, 等. 基于异步交互聚合网络的港船作业区域人员异常行为识别[J]. 交通信息与安全, 2022, 40(2): 22-29. doi: 10.3963/j.jssn.1674-4861.2022.02.003

    CHEN X Q, ZHENG J B, LING J, et al. Detecting abnormal behaviors of workers at ship working fields via asynchronous interaction aggregation network[J]. Journal of Transport Information and Safety, 2022, 40(2): 22-29. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.003
    [17] 陈信强, 王美琳, 李朝锋, 等. 基于深度学习与多级匹配机制的港区人员轨迹提取[J]. 交通运输系统工程与信息, 2023, 23(4): 70-79.

    CHEN X Q, WANG M L, LI C F, et al. Port staff trajectory extraction based on deep learning and multi-level matching mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(4): 70-79. (in Chinese)
    [18] ZHUANG J, QIN Z, YU H, et al. Task-spe-cific context decoupling for object detection[OL]. (2023-03-02)[2024-04- 26]. http://arxiv.org/abs/2303.01047.
    [19] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada: IEEE, 2023.
    [20] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and- distribute mechanism[OL]. (2023-10-23)[2024-04-30]. http://arxiv.org/abs/2309.11331.
    [21] LI H, LI J, WEI H, et al. Slim-neck by GS-Conv: a better design paradigm of detector architectures for autonomous vehicles[OL]. (2022-08-17)[2024-04-30]. http://arxiv.org/abs/2206.02424.
    [22] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[OL]. (2023-07-14)[2024- 05-01]. http://arxiv.org/abs/2307.07662.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  124
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 网络出版日期:  2024-09-14

目录

    /

    返回文章
    返回