Characteristics of Driving Behavior and Performance Caused by Plateau Environment of Young and Middle-aged Drivers
-
摘要: 为了量化分析高原环境导致的驾驶行为特征差异,寻找驾驶绩效下降时间窗,运用驾驶模拟器和低氧发生器在平原地区模拟海拔3 900 m高原驾驶环境,开展驾驶模拟试验分别收集驾驶人在平原环境和模拟高原环境的驾驶行为数据和心电图(electrocardiogram,ECG)信号数据。通过对比高原实车试验环境驾驶人的心率指标变化,运用雷达图、数值排序图和单因素方差分析方法对平原、高原环境下的驾驶行为特征进行对比分析,引入Jensen-Shannon散度(JS散度)量化2种环境下横向偏移距离、横向加速度、转向盘旋转率和速度这4个指标的概率密度拟合分布之间的差异,使用差分法确定高原环境下的驾驶绩效下降时间,验证了模拟高海拔环境驾驶模拟试验的有效性研究。结果表明:高原环境下横向偏移距离标准差、横向加速度标准差、转向盘旋转率标准差、速度标准差比平原环境下分别增加了0.094 3 m,0.119 0 m/s2,0.000 9 °/s,0.651 3 km/h,车辆整体稳定性降低;借助JS散度发现横向偏移距离、横向加速度、转向盘旋转率和速度这4个指标在2种环境下的数值分布存在较大距离,分别为0.23,0.11,0.01,0.02,其中车辆的横向运动受负面影响更大;在进入海拔3 900 m的高原地区时,驾驶绩效约在6 min后显著下降。Abstract: To analyze effects of a hypoxic environment on driving performance, a driving simulator experiment is conducted in this study. Both drivers' behavioral data and physiological data are collected by simulating a plateau scenario (3 900 m). The driver behavior characteristics in the plateau scenario and plain scenario are analyzed using a radar map, a numerical ranking map, and one-way ANOVA. The probability density fitting distribution differences between the two scenarios for road offset, steering velocity, lateral acceleration, and speed are quantified using the Jensen-Shannon divergence. The difference method is employed to identify time windows when driving performance decreased in the plateau area. The validity of the simulated hypoxic driving environment is verified by comparing the heart rate trend of the pilot test data in the plateau. The results indicated that: ① the standard deviation of road offset, lateral acceleration, steering velocity, and speed in the plateau scenario increase by 0.094 3 m, 0.119 0 m/s2, 0.000 9 °/s, and 0.651 3 km/h, respectively, compared to the plain scenario; ② the fitted probability density distribution differences between the plateau and plain scenarios for road offset, lateral acceleration, steering velocity, and speed are 0.23, 0.11, 0.01, and 0.02, respectively (thus, it could be inferred that vehicle lateral movement is more affected by the high-altitude factor); ③ driving performance decrease significantly after 6 minutes upon entering the plateau area at 3 900 m altitude.
-
Key words:
- traffic safety /
- plateau environment /
- driver behavior /
- Jensen-Shannon divergence /
- driving performance
-
表 1 横向加速度指标缩小前后对比
Table 1. Comparison before and after reduction of lateral acceleration
行驶里程/m 原始加速度/(m/s2) 缩小加速度/(m/s2) 1 384 2.156 8 0.007 0 1 386 2.156 9 0.007 0 1 388 2.413 1 0.003 9 1 390 -3.028 4 -0.000 9 1 392 -3.026 7 -0.000 9 1 394 -2.200 0 -0.006 3 表 2 转向盘旋转率指标变换前后对比
Table 2. Comparison before and after reduction of steering velocity
行驶里程/m 原始旋转率/(°/s) 变换后旋转率/(°/s) 2 202 -0.022 7 2.799 7 2 204 -0.045 4 3.100 8 2 206 -0.109 4 3.482 7 2 208 0.102 3 -3.749 7 2 210 0.042 6 -3.598 0 2 212 0.104 1 -3.753 7 表 3 各指标在2种环境下的描述性统计和方差分析结果
Table 3. Results of descriptive statistics and analysis of variance of variables under the two environments
指标 平原环境 高原环境 F p 横向偏移距离_标准差/m 0.272 7 0.367 0 162.238 <0.001 横向加速度_标准差/(m/s2) 0.211 4 0.330 4 175.911 <0.001 转向盘旋转率_标准差/(°/s) 0.004 3 0.005 2 41.573 <0.001 速度_标准差/(km/h) 6.459 9 7.111 2 14.481 <0.001 表 4 心率指标在2种环境下的描述性统计和方差分析结果
Table 4. Results of descriptive statistics and analysis of heart rate under the two environments
指标 心率/(次/min) 平原环境 75.62 高原环境 95.6 F 1 007.94 P <0.001 表 5 分组情况
Table 5. Grouping
对比分析 组内 交叉 组间 对比组1 P-1 G-1 P-1与G-1混合 P 对比组2 P-2 G-2 P-2与G-2混合 G 表 6 分组概率密度分布的JS散度值
Table 6. JS divergence calculation results of probability density distribution
指标 组内对比的JS散度值 交叉对比的JS散度值 组间对比的JS散度值 平原环境 高原环境 横向偏移距离 0.00 0.00 0.00 0.23 横向加速度 0.00 0.00 0.00 0.11 转向盘旋转率 0.00 0.00 0.00 0.01 速度 0.00 0.00 0.00 0.02 -
[1] ZHANG D, CHEN F, ZHU J Y, et al. Research on drivers'hazard perception in plateau environment based on visual characteristics[J]. Accident Analysis & Prevention, 2022, 166, 1-12. [2] 李天彪, 艾力·斯木吐拉. 高原公路连续驾驶时间对驾驶人疲劳影响的分析[J]. 交通科技与经济, 2015, 17(3): 1-5. doi: 10.3969/j.issn.1008-5696.2015.03.001LI T B, ISMUTULLA E. The Analysis on continuous driving time of driver on plateau highway to fatigue influence[J]. Technology & Economy in Areas of Communications, 2015, 17(3): 1-5. (in Chinese) doi: 10.3969/j.issn.1008-5696.2015.03.001 [3] YUAN Z Q, HUANG D, TONG W Q, et al. Characteristic analysis and prediction of traffic accidents in the multi-ethnic plateau mountain area[J]. Journal of Transportation Engineering, 2020, 146(8): 42-68. [4] 朱兴琳, 艾力·斯木吐拉, 王宇. 高原地区公路交通安全现状及事故特征分析[J]. 公路与汽运, 2013, (6): 78-82.ZHU X L, ISMUTULLA E, WANG Y. Analysis of highway traffic safety status and accident characteristics in plateau areas[J]. Highways & Automotive Applications, 2013, (6): 78-82. (in Chinese) [5] 胡江碧, 江川, 高小娟. 基于驾驶工作负荷的高海拔地区隧道照明亮度分析[J]. 隧道建设(中英文), 2020, 40(增刊1): 17-24.HU J B, JIANG C, GAO X J. Analysis of tunnel lighting brightness in high-altitude area based on driving workload[J]. Tunnel Construction, 2020, 40(S1): 17-24. (in Chinese) [6] 刘洋. 基于驾驶人心理、生理反应的行车紧张性与高原公路纵坡关系研究[D]. 乌鲁木齐: 新疆农业大学, 2015.LIU Y. Study on the relationship between driving tenseness and plateau highway longitudinal slope based on drivers'physiological and physiological reaction[D]. Urumqi: Xinjiang Agricultural University, 2015. (in Chinese) [7] ZHANG H, GUO D, SHEN G H, et al. Driving sub-task analysis in high altitude environment[C]. 1st International Conference on Industrial Artificial Intelligence(IAI), Shenyang, China: IEEE, 2019. [8] 李岩辉. 高原公路驾驶人心率变异性分析[J]. 综合运输, 2019, 41(8): 78-82.LI Y H. Analysis of heart rate variability of plateau highway drivers[J]. China Transportation Review, 2019, 41(8): 78-82. (in Chinese) [9] 汪帆, 程慧婷, 刘建蓓, 等. 超高海拔区域驾驶人超车注视特性[J]. 中国公路学报, 2018, 31(4): 10-17.WANG F, CHEN H T, LIU J B, et al. Eye gaze characteristics of overtaking process in very high altitude area[J]. China Journal of Highway and Transport, 2018, 31(4): 10-17. (in Chinese) [10] 艾力·斯木吐拉, 李岩岩, 伊力扎提·艾力. 高原公路驾驶人生理特性动态试验分析[J]. 中国安全科学学报, 2016, 26 (5): 7-12.ISMUTULLA E, LI Y Y, ELI I. Dynamic test based analysis of physiological characteristics of driver driving on plateau highway[J]. China Safety Science Journal, 2016, 26(5): 7-12. (in Chinese) [11] 李文伟, 王令飞, 王进州, 等. 高原公路纵断面线形与驾驶人体力负荷的试验分析[J]. 科学技术与工程, 2019, 19 (31): 402-406.LI W W, WANG L F, WANG J Z, et al. Experimental analysis of vertical section of plateau highway and driver's physical load[J]. Science Technology and Engineering, 2019, 19 (31): 402-406. (in Chinese) [12] WANG X Y, WU B, YANG W H, et al. Effect of high-altitude environment on driving safety: a study on drivers' mental workload, situation awareness, and driving behaviour[J]. Journal of Advanced Transportation, 2020, (2): 1-10. [13] WANG F, CHEN H, ZHU C H, et al. Estimating driving fatigue at a plateau area with frequent and rapid altitude change[J]. Sensors, 2019, 19(22): 4982. [14] 朱兴林, 姚亮, 刘泓君, 等. 考虑驾驶风格差异的高原公路危险路段识别研究[J]. 交通运输系统工程与信息, 2022, 22 (6): 172-182.ZHU X L, YAO L, LIU H J, et al. Identification of dangerous sections of highland roads considering differences in driving styles[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 172-182. (in Chinese) [15] 徐文胜. 高原地区车辆运行速度预测模型研究[D]. 南京: 东南大学, 2019.XU W S. Research on predicting models of vehicle operating speed in plateau[D]. Nanjing: Southeast University, 2019. (in Chinese) XUE Q W, XU J W, YAN X D, et al. A study on the correlation between vehicle control behaviors and rear-end collision risk under foggy conditions[J]. Journal of Transport Information and Safety, 2022, 40(1): 19-27. (in Chinese) [16] 郭子慧, 郭伟伟, 谭墍元. 驾驶人接管自动驾驶车辆的眼动特性和行为分析[J]. 中国安全科学学报, 2022, 32(1): 65-71.GUO Z H, GUO W W, TAN J Y. Analysis on eye movement characteristics and behavior of drivers taking over automated vehicles[J]. China Safety Science Journal, 2022, 32(1): 65-71. (in Chinese) [17] 吴昊. 高寒高海拔地区公路交通事故分析与预防对策研究——以青藏公路为例[D]. 西安: 长安大学, 2017.WU H. Analysis and preventive measures of highway traffic accidents at high altitude and high altitude: a case study of qinghai-tibet highway[D]. Xi'an: Chang'an University, 2017. (in Chinese) [18] 薛晴婉, 徐嘉伟, 闫学东, 等. 雾天驾驶人车辆操纵行为特性及其与追尾风险相关性分析[J]. 交通信息与安全, 2022, 40(1): 19-27. [19] 高振海, Le Dinh Dat, 胡宏宇, 等. 驾驶人无意识车道偏离识别方法[J]. 吉林大学学报(工学版), 2017, 47(3): 709-716.GAO Z H, DAT L D, HU H Y, et al. Recognition method of driver's unintentional lane departure[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 709-716. [20] 童舜海. 基于信息论的图像特征选择[J]. 丽水学院学报, 2011, 33(5): 34-41.TONG S H. Image feature selection based on information theory[J]. Journal of Lishui University, 2011, 33(5): 34-41. (in Chinese) [21] 张妍, 韩光威, 陆宁云, 等. 基于JS散度的轨道车辆门系统健康状态评估方法[J]. 机械设计与制造工程, 2017, 46(11): 122-127.ZHANG Y, HAN G W, LU N Y, et al. The health assessment of railway vehicle door system based on Jensen-Shannon divergence[J]. Machine Design and Manufacturing Engineering, 2017, 46(11): 122-127. (in Chinese) [22] 刘瑞, 马志雄, 武彪, 等. 驾驶人驾驶行为的统计学特性[J]. 同济大学学报(自然科学版), 2019, 47(6): 832-841.LIU R, MA Z X, WU B, et al. Driving behavior statistical characteristics of the driver[J]. Journal of Tongji University (Natural Science), 2019, 47(6): 832-841. (in Chinese)