Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
ZHU Chengyuan, YAN Nanxin. A Simulation Optimization Algorithm for Multi-aircraft Rerouting in Severe Weather[J]. Journal of Transport Information and Safety, 2021, 39(2): 109-117. doi: 10.3963/j.jssn.1674-4861.2021.02.014
Citation: ZHU Chengyuan, YAN Nanxin. A Simulation Optimization Algorithm for Multi-aircraft Rerouting in Severe Weather[J]. Journal of Transport Information and Safety, 2021, 39(2): 109-117. doi: 10.3963/j.jssn.1674-4861.2021.02.014

A Simulation Optimization Algorithm for Multi-aircraft Rerouting in Severe Weather

doi: 10.3963/j.jssn.1674-4861.2021.02.014
  • Received Date: 2021-01-24
  • A simulation optimization algorithm for multiple aircraft diversion routes under severe weather is studied to address the lack of consideration for reducing the total controller workload in the planning of multiple aircraft re-routes in the regional control area(RCA)during severe weather. Guiyang RCA is taken as a case study. A gray model is used to predict the dynamic impact range of the flight forbidden area(FFA), and a geometric algorithm is used to plan the alternative diversion routes, with the operation rules of the discrete particle swarm optimization algorithm (DPSO)improved. The simulation optimization algorithm of multiple aircraft diversion routes in severe weather is implemented by combining the predicted FFA, the pre-planned diversion routes, the improved DPSO algorithm, and the total airspace and airport modeler(TAAM)to minimize the total diversion routes and the total controller workload in the whole area. The results show that the simulation optimization algorithm, after several iterations, can obtain a diverting optimization scheme. The total controller workload decreases by 7.52%, and the total distance of diverting routes decreases by 4.48%, compared with the simulation optimization algorithm using the traditional particle swarm optimization algorithm(PSO). It has a slightly longer distance of diverting routes compared with the rerouting path algorithm using the multi-objective particle swarm algorithm(MOPSO)and the non-dominated sorted genetic algorithm-II(NSGA-II). However, the influences of controller workload should be considered. The simulation optimization algorithm can reduce the effective controller workload and the distance of diverting routes, which is useful for the planning of actually diverting routes.

     

  • loading
  • [1]
    NG H K, GRABBE S, MUKHERJEE A. Design and evaluation of a dynamic programming flight routing algorithm using the convective weather avoidance model[C]. AIAA Guidance, Navi gation, and Control Conference, Chicago, Illinois: AIAA, 2009.
    [2]
    KROZEL J, PENNY S, PRETE J, et al. Automated route gener ation for avoiding deterministic weather in transition air space[J]. Journal of Guidance, Control, and Dynamics. 2007, 30 (1): 144-153. doi: 10.2514/1.22970
    [3]
    PRETE J, MITCHELL J. Safe routing of multiple aircraft flows in the presence of time-varying weather data[C]. AIAA Guid ance, Navigation, and Control Conference, Rhode Island: AIAA, 2004.
    [4]
    PRETE J M. Aircraft routing in the presence of hazardous weather[D]. New York: Stony Brook University, 2007.
    [5]
    TAYLOR C, WANKE C. Dynamically generating operational ly-acceptable route alternatives using simulated annealing[C]. Ninth USA/Europe Air Traffic Management Research and De velopment Seminar(ATM2011), Virginia: Air Traffic Control Quarterly, 2011.
    [6]
    KROZEL J, PENNY S, PRETE J. Comparison of algorithms for synthesizing weather avoidance routes in transition air space[C]. AIAA Guidance, Navigation, and Control Confer ence, Rhode Island: AIAA, 2004.
    [7]
    KROZEL J, PRETE J, MITCHELL J, et al. Designing on-demand coded departure routes[C]. AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado: AIAA, 2006.
    [8]
    李雄, 徐肖豪, 朱承元, 等. 基于几何算法的空中交通改航路径规划[J]. 系统工程, 2008, 26(8): 37-40. doi: 10.3969/j.issn.1001-4098.2008.08.007

    LI Xiong, XU Xiaohao, ZHU Chengyuan, et al. Air traffic re route planning based on geometry algorithm[J]. Systems Engi neering, 2008(8): 37-40. (in Chinese) doi: 10.3969/j.issn.1001-4098.2008.08.007
    [9]
    赵元棣, 李瑞东, 吴佳馨. 动态危险天气下改航路径快速规划方法[J]. 中国科技论文, 2020, 15(6): 678-681+689. doi: 10.3969/j.issn.2095-2783.2020.06.012

    ZHAO Yuandi, LI Ruidong, WU Jiaxin. Fast reroute planning method under dynamic hazardous weather conditions[J]. China Sciencepaper, 2020, 15(6): 678-681+689. (in Chinese) doi: 10.3969/j.issn.2095-2783.2020.06.012
    [10]
    张兆宁, 魏中慧. 散点状分布危险天气下的终端区动态改航方法[J]. 中国安全科学学报, 2016, 26(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601008.htm

    ZHANG Zhaoning, WEI Zhonghui. A dynamic deviation meth od for terminal control areas under scattered hazardous weath er[J]. China Safety Science Journal, 2016, 26(1): 40-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201601008.htm
    [11]
    杜实, 王俊凯, 任景瑞. 基于改进多目标粒子群算法的航空器改航研究[J]. 安全与环境学报, 2020, 20(1): 177-185. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001024.htm

    DU Shi, WANG Junkai, REN Jingrui. On the aircraft fly ing-goal diversion based on the improved multi-objective parti cle swarm optimization[J]. Journal of Safety and Environment, 2020, 20(1): 177-185. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001024.htm
    [12]
    刘国栋, 张志锋. 一种改进的粒子群算法与遗传算法的比较[J]. 火力与指挥控制, 2010, 35(增刊1): 150-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ2010S1052.htm

    LIU Guodong, ZHANG Zhifeng. An improved particle swarm optimization algorithm and genetic algorithm[J]. Fire Control and Command Control, 2010, 35(S1): 150-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ2010S1052.htm
    [13]
    李雄. 飞行危险天气下的航班改航路径规划研究[D]. 南京: 南京航空航天大学, 2009.

    LI Xiong. Flight rerouting path planning in severe weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [14]
    陈可嘉, 陈琳琳. 危险天气飞行受限区域的划设与预测[J]. 南京航空航天大学学报(社会科学版), 2017, 19(4): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HTXB201704012.htm

    CHEN Kejia, CHEN Linlin. Division and prediction of flight forbidden area in severe weather[J]. Journal of Nanjing Univer sity of Aeronautics and Astronautics(Social Sciences Edi tion), 2017, 19(4): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HTXB201704012.htm
    [15]
    谢春生, 李雄. 危险天气影响航路飞行区域的划设及评估[J]. 中国安全科学学报, 2010, 20(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201010010.htm

    XIE Chunsheng, LI Xiong. Division and evaluation of flight forbidden area in severe weather[J]. China Safety Science Journal, 2010, 20(10): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201010010.htm
    [16]
    高伟, 叶志坚, 陈晨. 终端区进场流的路径选择研究[J]. 交通信息与安全, 2016, 34(4): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201604006.htm

    GAO Wei, YE Zhijian, CHEN Chen. A study on path selec tion of arrival flow at airport landing areas[J]. Journal of Trans port Information and Safety, 2016, 34(4): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201604006.htm
    [17]
    刘胜利, 王刚. 基于雷达图的空袭目标突防航路威胁评估[J]. 系统仿真学报, 2021, 33(1): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202101023.htm

    LIU Shengli, WANG Gang. Threat assessment for the defense penetration paths of air strike aircrafts based on radar chart[J]. Journal of System Simulation, 2021, 33(1): 196-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202101023.htm
    [18]
    程毕芸, 鲁海燕, 徐向平, 等. 求解旅行商问题的改进局部搜索混沌离散粒子群优化算法[J]. 计算机应用, 2016, 36(1): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601028.htm

    CHENG Biyun, LU Haiyan, XU Xiangping, et al. Improved lo cal-search-based chaotic discrete panicle swarm optimization algorithm for solving traveling salesman problem[J]. Journal of Computer Applications, 2016, 36(1): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201601028.htm
    [19]
    李雄, 徐肖豪, 赵嶷飞, 等. 散点状分布危险天气区域下的航班改航路径规划[J]. 航空学报, 2009, 30(12): 2342-2347. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200912018.htm

    LI Xiong, XU Xiaohao, ZHAO Yifei, et al. Flight rerouting path planning in dispersedly distributed severe weather areas[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2342-2347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200912018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (461) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return