Citation: | CHEN Yue, JIAO Pengpeng, BAI Ruyu, LI Rujian. Modeling Car Following Behavior of Autonomous Driving Vehicles Based on Deep Reinforcement Learning[J]. Journal of Transport Information and Safety, 2023, 41(2): 67-75. doi: 10.3963/j.jssn.1674-4861.2023.02.007 |
[1] |
LI X, CUI J, SHI A, et al. Stop-and-go traffic analysis: theoretical properties, environmental impacts and oscillation mitigation[J]. Transportation Research Part B: Methodological, 2014(70): 319-339.
|
[2] |
ZHENG Z, AHN S, MONSERE C M. Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis & Prevention, 2010, 42(2): 626-636.
|
[3] |
GOLOB T F, RECKER W W, ALVAREZ V M. Safety aspects of freeway weaving sections[J]. Transportation Research Part A: Policy & Practice, 2004, 38(1): 35-51.
|
[4] |
韩雨, 郭延永, 张乐, 等. 消除高速公路运动波的可变限速控制方法[J]. 中国公路学报, 2022, 35(1): 151-158. doi: 10.19721/j.cnki.1001-7372.2022.01.013
HAN Y, GUO Y Y, ZHANG L, et al. An optimal variable speed limit control approach against freeway jam waves[J]. China Journal of Highway and Transport, 2022, 35(1): 151-158. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2022.01.013
|
[5] |
HE Z, LIANG Z, SONG L, et al. A jam-absorption driving strategy for mitigating traffic oscillations[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 802-813. doi: 10.1109/TITS.2016.2587699
|
[6] |
秦严严, 王昊, 何兆益, 等. 基于比功率的自动驾驶交通流油耗分析[J]. 交通运输系统工程与信息, 2020, 20(1): 91-96. doi: 10.16097/j.cnki.1009-6744.2020.01.014
QIN Y Y, WANG H, HE Z Y, et al. Fuel consumption analysis of automated driving traffic flow based on vehicle specific power[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 91-96. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2020.01.014
|
[7] |
KESTING A, TREIBER M, SCHÖNHOF M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008.16(6): 668-683. doi: 10.1016/j.trc.2007.12.004
|
[8] |
LI T N, CHEN D J, ZHAO H, et al. Car-following behavior characteristics of adaptive cruise control vehicles based on empirical experiments[J]. Transportation Research Part B: Methodological, 2021.147: 67-91. doi: 10.1016/j.trb.2021.03.003
|
[9] |
LIN X, MENG W, VAN AREM B. Realistic car-following models for microscopic simulation of adaptive and cooperative adaptive cruise control vehicles[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2623(1): 1-9. doi: 10.3141/2623-01
|
[10] |
ZHOU M, QU X, LI X. A recurrent neural network based microscopic car following model to predict traffic oscillation[J]. Transportation Research Part C: Emerging Technologies, 2017, 84: 245-264. doi: 10.1016/j.trc.2017.08.027
|
[11] |
HUANG X, SUN J, SUN J. A car-following model considering asymmetric driving behavior based on long short-term memory neural networks[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 346-362. doi: 10.1016/j.trc.2018.07.022
|
[12] |
MA L, QU S. A sequence to sequence learning based car-following model for multi-step predictions considering reaction delay[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102785. doi: 10.1016/j.trc.2020.102785
|
[13] |
朱冰, 蒋渊德, 赵健, 等. 基于深度强化学习的车辆跟驰控制[J]. 中国公路学报, 2019, 32(6): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906006.htm
ZHU B, JIANG Y D, ZHAO J, et al. A car-following control algorithm based on deep reinforcement learning[J]. China Journal of Highway and Transport, 2019, 32(6): 53-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906006.htm
|
[14] |
闫浩, 刘小珠, 石英. 基于REINFORCE算法和神经网络的无人驾驶车辆变道控制[J]. 交通信息与安全, 2021, 39(1): 164-172. doi: 10.3963/j.jssn.1674-4861.2021.01.0019
YAN H, LIU X Z, SHI Y. Lane-change control for unmanned vehicle based on REINFORCE algorithm and neural network[J]. Journal of Transport Information and Safety, 2021, 39(1): 164-172. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.0019
|
[15] |
李孟凡, 秦文虎, 云中华. 基于横纵向联合控制的多目标优化车辆跟驰研究[J]. 计算机应用研究, 2022, 39(8): 2409-2413. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202208028.htm
LI M F, QIN W H, YUN Z H. Multi-objective optimal car-following model with lateral and longitudinal control[J]. ApplicationResearchofComputers, 2022, 39 (8): 2409-2413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202208028.htm
|
[16] |
KREIDIEH A R, WU C, BAYCN A M. Dissipating stop-and-go waves in closed and open networks via deep reinforcement learning[C]. 2018 IEEE International Conference on Intelligent Transportation Systems(ITSC), Hawaii, USA: IEEE, 2018.
|
[17] |
QU X, YU Y, ZHOU M, et al. Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach[J]. Applied Energy, 2020(257): 114030
|
[18] |
ZHU M X, WANG Y H, PU Z Y, et al. Safe, efficient, and comfortable velocity control based on reinforcement learning for autonomous driving[J]. Transportation Research Part C: Emerging Technologies, 2020(117): 102662.
|
[19] |
BALAS V E, BALAS M M. Driver assisting by inverse time to collision[C]. 2006 World Automation Congress, Budapest, Hungary: IEEE, 2006.
|
[20] |
YAO Z H, RONG H, JIANG Y S, et al. Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways[J]. Journal of Safety Research, 2020(75): 262-274.
|
[21] |
YAO Z H, XU T R, JIANG Y S, et al. Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time[J]. Physica A: Statistical Mechanics and Its Applications, 2021(561): 125218.
|
[22] |
MONTANINO M, PUNZO V. Trajectory data reconstruction and simulation-based validation against macroscopic traffic patterns[J]. Transportation Research Part B: Methodological, 2015, 80: 82-106.
|
[23] |
TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000(62): 1805-1824.
|