Citation: | ZHANG Tao, WANG Jin, LIU Bin, XU Niuqi. Crack Segmentation of Asphalt Pavement Images Based on Improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(6): 90-99. doi: 10.3963/j.jssn.1674-4861.2023.06.010 |
[1] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
SHA A M, TONG Z, GAO J. Recognition and measurement of road surface diseases based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
|
[2] |
杭伯安. 基于改进k-means算法的沥青路面裂缝分割方法[J]. 公路交通科技, 2023, 40(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202304001.htm
HANG B A. Asphalt pavement crack segmentation method based on improved K-means algorithm[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202304001.htm
|
[3] |
沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38 (8): 993-997. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308025.htm
SHEN Z Q, PENG Y H, SHU N. A SVM-based cross-scale damage recognition method for pavement image[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (8): 993-997. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308025.htm
|
[4] |
张娟, 沙爱民, 孙朝云, 等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报, 2008(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802007.htm
ZHANG J, SHA A M, SUN C Y, et al. Automatic pavement crack recognition based on phase grouping method[J]. China Journal of Highway and Transport, 2008(2): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802007.htm
|
[5] |
OLIVEIRA H, CORREIA P L. CrackIT: An image processing toolbox for crack detection and characterization[C]. 2014 IEEE International Conference on Image Processing(ICIP), Paris, France: IEEE, 2014.
|
[6] |
ZHANG A, WANG K C, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
|
[7] |
ZHANG A, WANG K C, FEI Y, et al. Deep Learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet[J]. Journal of Computing in Civil Engineering, 2018, 32(5): 04018041. doi: 10.1061/(ASCE)CP.1943-5487.0000775
|
[8] |
FEI Y, WANG K C, ZHANG A, et al. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-Ⅴ[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 273-284. doi: 10.1109/TITS.2019.2891167
|
[9] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
[10] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[OL]. (2016-06-07)[2022-12-11].
|
[11] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848
|
[12] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[OL]. (2017-12-05)[2022-12-11].
|
[13] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with atrous separable convolution for semantic image segmentation[OL]. (2018-08-22)[2022-12-11].
|
[14] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[OL]. (2015-05-18)[2022-12-11].
|
[15] |
OKTAY O, SCHLEMPER J, FOLGOC LL, et al. Attention u-net: Learning where to look for the pancreas[OL]. (2018-05-20)[2023-08-27].
|
[16] |
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, Granada, Spain: Springer, 2018.
|
[17] |
YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. doi: 10.1111/mice.12412
|
[18] |
张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013
ZHANG Z H, DENG Y X, ZHANG X X. Asphalt pavement disease extraction and classification method based on improved SegNet[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
|
[19] |
史梦圆, 高俊钗. 改进U-Net算法的路面裂缝检测研究[J]. 自动化与仪表, 2022, 37(10): 52-55, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY202210011.htm
SHI M Y, GAO J C. Research on pavement crack detection based on improved U-Net algorithm[J]. Automation & Instrumentation, 2022, 37(10): 52-55, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY202210011.htm
|
[20] |
GAO X, TONG B. MRA-UNet: balancing speed and accuracy in road crack segmentation network[J]. Signal, Image and Video Processing, 2023, 17(5): 2093-2100. doi: 10.1007/s11760-022-02423-9
|
[21] |
惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114, 131. doi: 10.3963/j.jssn.1674-4861.2023.01.011
HUI B, LI Y J. Pavement crack detection method based on improved U-type neural network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114, 131. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.011
|
[22] |
LIU C, ZHU C, XIA X, et al. FFEDN: feature fusion encoder decoder network for crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9) : 15546-15557. doi: 10.1109/TITS.2022.3141827
|
[23] |
MEI Q, GÜL M. A cost effective solution for pavement crack inspection using cameras and deep neural networks[J]. Construction and Building Materials, 2020, 256: 119397. doi: 10.1016/j.conbuildmat.2020.119397
|
[24] |
ZHONG J, ZHU J, HUYAN J, et al. Multi-scale feature fusion network for pixel-level pavement distress detection[J]. Automation in Construction, 2022, 141: 104436. doi: 10.1016/j.autcon.2022.104436
|
[25] |
唐港庭, 尹超, 王绍平, 等. 基于改进GoogLeNet的沥青路面裂缝识别算法[J]. 智能计算机与应用, 2023, 13(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ202303033.htm
TANG G T, YIN C, WANG S P, et al. Asphalt pavement crack recognition algorithm based on improved GoogLeNet[J]. Intelligent Computer and Applications, 2023, 13(3): 202-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ202303033.htm
|
[26] |
HOU Q, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[OL]. (2020-03-20)[2023-02-23].
|
[27] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[OL]. (2018-05-16)[2023-03-26].
|
[28] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, America: IEEE, 2016.
|
[29] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. The European Conference on Computer Vision, Munich, Germany: Springer, 2018.
|
[30] |
LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced nlp tasks[OL]. (2020-08-29)[2023-06-21].
|
[31] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[OL]. (2018-02-07)[2023-06-28].
|
[32] |
RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77 (1): 157-173.
|
[33] |
WU Y, CAO W, SAHIN S, et al. Experimental characterizations and analysis of deep learning frameworks[C]. 2018 IEEE International Conference on Big Data, Seattle, USA: IEEE, 2018. International Workshop, Granada, Spain: Springer, 2018.
|