留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于3D点云语义地图表征的智能车定位

朱云涛 李飞 胡钊政 吴华伟

朱云涛, 李飞, 胡钊政, 吴华伟. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全.
引用本文: 朱云涛, 李飞, 胡钊政, 吴华伟. 基于3D点云语义地图表征的智能车定位[J]. 交通信息与安全.
ZHU Yuntao, LI Fei, HU Zhaozheng, WU Huawei. Intelligent Vehicles Localization Based on Semantic Map Representation from 3D Point Clouds[J]. Journal of Transport Information and Safety.
Citation: ZHU Yuntao, LI Fei, HU Zhaozheng, WU Huawei. Intelligent Vehicles Localization Based on Semantic Map Representation from 3D Point Clouds[J]. Journal of Transport Information and Safety.

基于3D点云语义地图表征的智能车定位

基金项目: 

国家重点研发计划项目(2018YFB1600801)、武汉市科技局项目(2020010601012165,2020010602011973,2020010602012003)、重庆市自然科学基金项目(cstc2020jcyj-msxmX0978)资助

详细信息
    作者简介:

    朱云涛(1997-),硕士研究生.研究方向:计算机视觉、激光SLAM.E-mail:zyt941292303@whut.edu.cn

    通讯作者:

    胡钊政(1979-),博士,教授.研究方向:计算机视觉、智能车路协同.E-mail:zzhu@whut.edu.cn

  • 中图分类号: U495

Intelligent Vehicles Localization Based on Semantic Map Representation from 3D Point Clouds

  • 摘要: 为提高智能车节点定位准确率,研究了基于3D点云语义地图表征的智能车定位方法。该方法分为3个部分:基于三维激光点云的语义分割,包括地面分割,交通标志牌分割和杆状语义目标分割;面向智能车的点云语义地图表征,利用分割的语义目标投影,生成带权有向图,语义路,语义编码,再以语义编码和高精度GPS的全局位置组成语义地图表征模型;基于语义表征模型的智能车定位,包括基于GPS匹配的粗定位和基于语义编码渐进匹配的节点定位。实验在3种长度不同、复杂度不同的道路场景下进行,节点定位准确率分别为98.5%,97.6%和97.8%,结果表明所提出的定位方法节点定位准确率高、鲁棒性强且适用于不同的道路场景。

     

  • [1] 张帆, 胡钊政, 陈佳良, 等.基于Wi-Fi指纹与视觉融合的室内交通定位[J].交通信息与安全, 2019, 37(3):61-69+100. ZHANG Fan, HU Zhaozheng, CHEN Jialiang, et al. Indoor traffic positioning based on Wifi fingerprint and vision fusion[J]. Journal of Transport Information and Safety, 2019, 37(3):61-69+100. (in Chinese)
    [2] WOLCOTT R W, EUSTICE R M. Robust LiDAR localization using multiresolution Gaussian mixture maps for autonomous driving[J]. The International Journal of Robotics Research,2017, 36(3):292-319.
    [3] MUR-ARTAL R,TARDOS J D. ORB-SLAM2:An open-source SLAM system for monocular stereo and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262.
    [4] 杨东凯, 寇艳红, 吴今培, 等.智能交通系统中的地图匹配定位方法[J].交通运输系统工程与信息, 2003(3):38-43. YANG Dongkai,KOU Yanhong,WU Jinpei,et al. A map-matching method in intelligent transport systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2003, 3(3):38-43. (in Chinese)
    [5] ZHANG Ji, SINGH S. LOAM:LiDAR odometry and mapping in real-time[C]. Robotics:Science and Systems Conference,Berkeley,California,USA:University of California, Berkeley, 2014.
    [6] KOIDE K. A Portable 3D LIDAR-based system for long-term and wide-area people behavior measurement[J]. International Journal of Advanced Robotic Systems, 2019, 16(2):1-13.
    [7] THRUN S, MONTEMERLO M, Dahlkamp H, et al. Stanley:The robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9):661-692.
    [8] ZERMAS D, IZZAT I, PAPANIKOLOPOULOS N. Fast segmentation of 3D point clouds:A paradigm on LiDAR data for autonomous vehicle applications[C]. International Conference on Robotics and Automation(ICRA), Singapore:IEEE, 2017.
    [9] 彭泽民, 叶青.自然环境下交通标志牌的检测与识别[J].电子测试, 2020(1):45-47+92. PENG Zemin, YE Qing. Detection and identification of traffic signs in natural environment[J]. Electronic Test, 2020(1):45-47+92. (in Chinese)
    [10] 李游.基于车载激光扫描数据的城市街道信息提取技术研究[D].武汉:武汉大学, 2017. LI You. Research on street information detection from mobile laser scanning data in urban areas[D]. Wuhan:Wuhan University, 2017. (in Chinese)
    [11] KUZNETSOVA K, SAMSONOVICHAV.Semantic-map-base dapproach to designing an insight problem solving assistant[J]. ProcediaComputerScience, 2018, 123:258-264.
    [12] DUBE R, DUGAS D, STUMM E, et al. SegMatch:Segment based place recognition in 3D point clouds[C]. International Conference on Robotics and Automation(ICRA),Singapore:IEEE, 2017.
    [13] LIU Yu, PETILLOT Y, LANE D, et al. Global localization with object-level semantics and topology[C]. International Conference on Robotics and Automation(ICRA), Montreal, QC, Canada:IEEE, 2019.
    [14] CHEN X, MILIOTO A, PALAZZOLO E, et al. SuMa++:Efficient LiDAR-based semantic SLAM[C]. International Conference on Intelligent Robots and Systems(IROS), Macau, China:IEEE, 2019.
    [15] GOLOVINSKIY A, FUNKHOUSER T. Min-cut based segmentation of point clouds[C]. IEEE International Conference on Computer Vision Workshops, Kyoto, Japan:IEEE, 2009.
    [16] 刘亚坤, 李永强, 刘会云, 等.基于改进RANSAC算法的复杂建筑物屋顶点云分割[J].地球信息科学学报, 2021, 23(8):1497-1507. LIU Yakun, LI Yongqiang, LIU Huiyun, et al. An improved RANSAC algorithm for point cloud segmentation of complex building roofs[J]. Journal of Geo-information Science, 2021, 23(8):1497-1507. (in Chinese)
    [17] AI C, TSAI Y J. Critical assessment of an enhanced traffic sign detection method using mobile LiDAR and INS technologies[J]. Journal of Transportation Engineering, 2015, 141(5):04014096.
    [18] PU Shi, RUTZINGER M, VOSSELMAN G, et al. Recognizing basic structures from mobile laser scanning data for road inventory studies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6):S28-S39.
    [19] TAO Qianwen, HU Zhaozheng, HUANG Gang, et al. LiDAR-only vehicle localization based on map generation[C]. Transportation Research Board(TRB), 2019 Annual Meeting, Washing D. C, America:NationalAcademies of USA, 2019.
  • 加载中
计量
  • 文章访问数:  8533
  • HTML全文浏览量:  370
  • PDF下载量:  6428
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 网络出版日期:  2021-12-14

目录

    /

    返回文章
    返回