A Review on Road Driving Safety Based on Driving Simulation Technologies
-
摘要: 对驾驶模拟技术在道路行车安全领域的研究及应用现状和存在的问题进行了分析。在广泛调研国内外相关文献的基础上,对驾驶模拟器进行了分类,并总结了国内外主要代表性科研型驾驶模拟器的发展历程,分析了典型驾驶模拟器的自由度、主要特征和应用领域。以“人-车-路-环境-事故”为主线,从不良驾驶行为特性分析、车辆主动安全技术研究、道路与交通设计、车辆驾驶环境以及道路行车事故研究5个方面,系统地梳理了驾驶模拟技术在国内外道路行车安全领域的应用研究现状、存在问题以及应用展望。在不良驾驶行为特性分析方面,重点研究了运用驾驶行为特性开展分心驾驶行为和疲劳驾驶行为的识别;在车辆主动安全技术研究方面,综述了运用驾驶行为开展车辆底盘一体化控制技术、安全辅助驾驶控制技术和自动驾驶接管行为的评价研究;在道路与交通设计方面,综述了道路几何和标志标线等的设计评价;在车辆驾驶环境方面,综述了不良气象、路侧景观和交通冲突等驾驶环境对驾驶行为的影响;在道路行车事故研究方面,总结了道路行车事故再现和事故影响因素分析等内容。此外,对驾驶模拟技术进行了应用展望,主要包括特殊人群的驾驶行为特性、智能网联汽车系统的测试及验证、混合交通流环境下的行车安全问题。对未来应对驾驶模拟器的有效性评价、不适性以及二次开发等问题进行探讨,以便更好地促进驾驶模拟技术的发展。Abstract: The current status and problems of the studies and applications of driving simulation technologies in the field of road traffic safety are analyzed. On the basis of extensive relevant literatures in China and abord, the driving simulators are classified. The development history of the typical driving simulators for scientific research is summarized, and the degrees of freedom, main features, and application areas of them are analyzed. With a main line of "human-vehicle-road-environment-accident", the current situations of the application studies, problems, and prospects are systematically analyzed from five aspects including risky driving behaviors, active safety technologies, road and traffic design, driving environment, and road traffic accidents. For the studies of risky driving behaviors, the identification of distracted and fatigue driving behaviors are analyzed with the application of driving characteristics. For the studies of active safety technologies, the vehicle cha ssis integrated control technology, safety-assisted driving control technology, and evaluation of take-over behaviors of automated driving are summarized. For the studies of road traffic design, the evaluation of geometric road design and traffic signs are analyzed. For the studies of driving environment, the effects of adverse weather, roadside views, and traffic conflicts are summarized. For the studies of road traffic accidents, the reproduction of accidents and influencing factors of traffic safety are analyzed. In addition, an application prospect of driving simulation technology is presented, mainly including driving behaviors of special groups, system testing of intelligent networked vehicles, and driving safety under the environment of mixed traffic flow. In order to better promote the development of driving simulation technology, the efficiency evaluation, discomfort, and secondary development of driving simulators will be studied in the future.
-
Key words:
- traffic safety /
- driving simulation /
- overview /
- driving safety /
- driving behaviors
-
表 1 国外主要代表性科研型驾驶模拟器
Table 1. Major representative driving simulators abroad
研发机构 研发时间 自由度 主要特征 应用领域 德国大众 20世纪70年代初 3 世界第1台真正意义上的驾驶模拟器,可实现侧倾、横摆、俯仰3个方向的运动 车辆系统测试及验证、车辆新技术研发等 瑞典国家道路和运输研究所 1984年 4 模拟器可实现侧倾、横摆、俯仰和侧向4个方向的运动 车辆的操控、人机界面的测试以及驾驶行为研究等 德国戴姆勒-奔驰 1985年 6 模拟器由液压驱动,可实现侧倾、横摆、俯仰、横向、纵向和垂直6个方向的运动 车辆产品开发、驾驶行为及车辆反应研究等方面 日本马自达 1991年 6 采用高性能计算机仿真系统和图形处理硬件系统,可提供非常复杂逼真的驾驶场景 车辆性能测试等方面 日本汽车研究所 1996年 6 模拟器由液压驱动,可实现侧倾、横摆、俯仰、横向、纵向和垂直6个方向的运动 车辆系统测试及验证等方面 美国爱荷华大学 2003年 13 模拟器配备8个LED屏幕,可提供360°交通场景,再开发潜力强 道路交通设计、车辆系统的安全性验证以及驾驶行为特性研究等方面 英国利兹大学 2006年 8 平台内置5个眼睛跟踪仪,250°视景屏幕,8通道的视觉信道以60 Hz频率更新 道路安全设计、驾驶分心、交通安全中的人因理论、自动驾驶等方面的研究 日本丰田 2008年 12 高4.5 m、直径1.7 m,内部可放置实车,360°球面屏幕可以呈现出逼真的驾驶场景 不良驾驶行为的安全性研究等方面 德国戴姆勒-奔驰 2010年 7 直径约7.5 m、高约4.5 m,采用电力驱动,但很难实现横、纵2个方向的运动交互 车辆主动安全技术、辅助驾驶技术等方面的研究 日本FORUM8公司 2014年 8 模拟器可支持与CarSim、TruckSim等仿真软件配套使用 道路安全、车辆开发、驾驶员因素等方面的研究 德国大众 2015年 6 模拟器具有前进和转向功能,可实现车体的横向、纵向、横摆、俯仰、侧倾和垂直运动 模拟车路的纵向协同交互 德国Vl-grade公司 & 米兰理工大学 2021年 9 动态驾驶模拟器DiM400采用绳索驱动系统,允许更大的运动范围,驾驶员能在更长的时间内承受更高的加速度,还允许在实际构建道路使用者与基础设施之前验证它们之间的相互作用 车辆动力学、油耗优化、高级驾驶员辅助系统(ADAS)功能验证和自动驾驶等研究 表 2 中国部分高校代表性科研型驾驶模拟器
Table 2. Representative driving simulators in some universities in China
研发机构 研发时间 自由度 主要特征 应用领域 吉林大学 1996年 6 具有较高的可扩展性和逼真的“人-车”交互界面,由液压驱动,能够实现“人-硬件”在环试验 道路交通安全评价、车辆安全系统设计、交通法规合理性的检验等方面 昆明理工大学 1999年 3 KMRTDS具有先进的车辆模型和逼真复杂的视景系统,允许与多台模拟器协同工作,对车辆具有选择性监视功能 道路安全性能验证、驾驶行为特性研究等方面 武汉理工大学 2004年 3 具有很强的驾驶交互性和真实感、高清晰和高逼真的视景、模块化的设计,能够满足不同用户的需求 驾驶行为特性分析、道路交通安全评价、道路交通事故致因分析、汽车安全辅助驾驶产品的评价、汽车自动驾驶仿真研究以及交通诱导研究等方面 清华大学 2009年 6 可模拟不同车型、不同路况和多种驾驶环境,能给人带来6D驾驶体验;还可与眼动仪、肌电、脑电等设备联合使用 先进汽车设计技术、汽车智能安全技术、行车安全与事故再现、驾驶行为机理的研究等方面 同济大学 2011年 8 平面操作空间20 m×5 m,内置5个刷新频率为60 Hz的投影仪,驾驶场景由250°曲面屏提供,电力驱动,代表我国驾驶模拟器发展的顶尖水平 道路交通安全设计、车辆安全技术研究、驾驶行为特性分析等方面 东南大学 2018年 6 具备眼动轨迹分析、心电检测、脑电信息分析、皮肤电反应检测等驾驶人生理、心理参数检测分析功能 城市交通安全、城市交通设施智能建管、城市交通系统智能控制等研究方面 -
[1] 《中国公路学报》编辑部. 中国交通工程学术研究综述· 2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001Editorial office of " China Journal of Highway and Transport ". Summary of academic research on china transportation engineering·2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.001 [2] 魏朗, 田顺, Chris SCHWARZ, 等. 驾驶模拟技术在汽车智能技术研发中的应用综述[J]. 公路交通科技, 2017, 34(12): 140-150+158. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712021.htmWEI L, TIAN S, CHRIS SCHWARZ, et al. Overview of the application of driving simulation technology in the research and development of automobile intelligent technology[J]. Journal of Highway and Transportation Research and Development, 2017, 34(12): 140-150+158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201712021.htm [3] 程海涛. 基于虚拟现实的直升机驾驶模拟器开发[D]. 长春: 吉林大学, 2014.CHENG H T. Development of a helicopter driving simulator based on virtual reality[D]. Changchun: Jilin University, 2014. (in Chinese) [4] SLOB J J. State-of-the-art driving simulators, a literature survey, DCT 2008. 107[R]. Eindhoven: Eindhoven University of Technology, 2008. [5] 田顺, 谷亚蒙, 魏朗, 等. 驾驶模拟器的发展历程及最新应用实例[J]. 汽车技术, 2018(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201804008.htmTIAN S, GU Y M, WEI L, et al. The development history and latest application examples of driving simulators[J]. Automobile Technology, 2018(4): 35-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS201804008.htm [6] 吴晓瑞, 吴志周. 汽车驾驶模拟器在交通安全中的应用综述[J]. 交通信息与安全, 2015, 33(2): 10-19. doi: 10.3963/j.issn1674-4861.2015.02.002WU X R, WU Z Z. Application of vehicle driving simulator in traffic safety[J]. Journal of Transport Information and Safety, 2015, 33(2): 10-19. (in Chinese) doi: 10.3963/j.issn1674-4861.2015.02.002 [7] 王婧雯. 机动车驾驶人典型不良驾驶行为分析及干预方法研究[D]. 合肥: 合肥工业大学, 2020.WANG J W. Analysis of typical risk driving behaviors of motorists and research on intervention methods[D]. Hefei: Hefei University of Technology, 2020. (in Chinese) [8] KABER D B, LIANG Y, ZHANG Y, et al. Driver performance effects of simultaneous visual and cognitive distraction and adaptation behavior[J]. Transportation Research Part F: Traffic Psychology & Behaviour, 2012, 15(5): 491-501. http://www.onacademic.com/detail/journal_1000035398163310_3f50.html [9] BALDWIN C L, ROBERTS D M, DANIELA B, et al. Detecting and quantifying mind wandering during simulated driving[J]. Frontiers in Human Neuroscience, 2017(11): 406. [10] 咸化彩. 次任务驾驶安全性评价指标及评价模型研究[D]. 长春: 吉林大学, 2014.XIAN H C. Research on evaluation index and evaluation model of sub-task driving safety[D]. Changchun: Jilin University, 2014. (in Chinese) [11] 朱彤, 胡月琦, 朱诗慧, 等. 驾驶人注意分散的认知模拟与交通流特性[J]. 长安大学学报(自然科学版), 2018, 38(2): 87-93. doi: 10.3969/j.issn.1671-8879.2018.02.011ZHU D, HU Y Q, ZHU S H, et al. Cognition simulation and traffic flow characteristics analysis indriving distraction[J]. Journal of Chang'an University(Natural Science Edition), 2018, 38(2): 87-93. (in Chinese) doi: 10.3969/j.issn.1671-8879.2018.02.011 [12] KING L M, NGUYEN H T, LAL S K. Early driver fatigue detetion from electroencephalography signals using artificial neural networks[C]. 28th Annual International Conference of Engineering in Medicine and Biology Society. New York: IEEE, 2006. [13] BAULK S D. Chasing the silver bullet: Meas uring driver fatigue using simple and complex tasks[J]. Accident Analysis & Prevention, 2008(40): 396-402. http://www.yorkcomputertechnologies.com/pdfs/Baulk2008.pdf [14] 李平凡, 王殿海, 刘东波, 等. 基于驾驶人生理心理参数的午餐后驾驶疲劳分析[J]. 长安大学学报(自然科学版), 2011, 31(4): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201104017.htmLI P F, WANG D H, LIU D B, et al. Analysis on driving fatigue before and after lunch based on indices of physiology and psychology[J]. Journal of Chang'an University(Natural Science Edition), 2011, 31(4): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201104017.htm [15] 刘建蓓, 马小龙, 张志伟, 等. 基于心电分析的青藏高原驾驶人疲劳特性[J]. 交通运输工程学报, 2016, 16(4): 151-158. doi: 10.3969/j.issn.1671-1637.2016.04.016LIU J B, MA X L, ZHANG Z W, et al. Fatigue characteristics of driver in Qinghai-Tibet Plateau based on electrocardiogram analysis[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 151-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.04.016 [16] 屈肖蕾, 成波, 林庆峰, 等. 基于驾驶员转向操作特性的疲劳驾驶检测[J]. 汽车工程, 2013, 35(9): 803-807+831. doi: 10.3969/j.issn.1000-680X.2013.09.010QU X L, CHENG B, LIN Q F, et al. Fatigue driving detection based on driver's steering operation characteristics[J]. Automotive Engineering, 2013, 35(9): 803-807 + 831. (in Chinese) doi: 10.3969/j.issn.1000-680X.2013.09.010 [17] 彭金栓, 徐磊, 邵毅明. 汽车主动安全技术现状及发展趋势[J]. 公路与汽运, 2014(1): 1-4. doi: 10.3969/j.issn.1671-2668.2014.01.001PENG J S, XU L, SHAO Y M. Current status and development trend of automobile active safety technology[J]. Highways & Automotive Applications, 2014(1): 1-4. (in Chinese) doi: 10.3969/j.issn.1671-2668.2014.01.001 [18] SOUDBAKHSH D. Development of a novel steering control collision avoidance system[D]. Washington, D. C. : The George Washington University, 2011. [19] KATZOURAKIS D I, VELENIS E, HOLWEG E, et al. Haptic steering support for driving near the vehicle' shandling limits: Test-track case[J]. IEEE Transactionson Intelligent Transportation Systems, 2014, 15(4): 1781-1789. doi: 10.1109/TITS.2014.2318520 [20] 杨建森. 面向主动安全的汽车底盘集成控制策略研究[D]. 长春: 吉林大学, 2012.YANG J S. Research on integrated control strategy of vehicle chassis oriented to active safety[D]. Changchun: Jilin University, 2012. (in Chinese) [21] BOYLE L N, MOECKLI J. Use patterns among early adopters of adaptive cruise control[J]. Human Factors, 2012, 54 (5): 722-733. doi: 10.1177/0018720811434512 [22] HAJEK W, GAPONOVA I, FLEISCHER K H, et al. Workload-adaptive cruise control: A new generation ofadvanced driver assistance systems[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 20(3): 108-120. http://www.sciencedirect.com/science/article/pii/S1369847813000582 [23] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201405002.htmGAO Z H, WU T, ZHAO H. Model of the driver's braking moment in vehicle virtual following collision avoidance[J]. Journal of Jilin University(Engineering Edition), 2014, 44 (5): 1233-1239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201405002.htm [24] 丁洁云, 党睿娜, 王建强, 等. 驾驶人换道决策分析及意图识别算法设计[J]. 清华大学学报(自然科学版), 2015, 55 (7): 769-774. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201507012.htmDING J Y, DANG R N, WANG J Q, et al. Driver's lane change decision analysis and intention recognition algorithm design[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 769-774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201507012.htm [25] ERIKSSON A, STANTON N A. Takeover time in highly automated vehicles: Noncritical transitions to and from manual control[J]. Human factors, 2017, 59(4): 689-705. doi: 10.1177/0018720816685832 [26] DOGAN E, HONNET V, MASFRAND S, et al. Effects of non-driving-related tasks on takeover performance in different take-over situations in conditionally automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019(62): 494-504. http://www.researchgate.net/publication/338644809_The_Impact_of_Non-Driving_Related_Tasks_on_Take-over_Performance_in_Conditionally_Automated_Driving_-_A_Review_of_the_Empirical_Evidence [27] 王彦峰, 陈浩林, 赵晓华, 等. 驾驶次任务沉浸等级对接管行为的影响分析[J]. 交通信息与安全, 2022, 40(1): 135-143. doi: 10.3963/j.jssn.1674-4861.2022.01.016WANG Y F, CHEN H L, ZHAO X H, et al. A study on the impact of immersion levels of non-driving-related tasks on takeover behavior[J]. Journal of Transport Information and Safety, 2022, 40(1): 135-143. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.016 [28] DAVIDSE R J. Assisting the older driver: Intersection design and in-car devices to improve the safety of the older driver[D]. Groningen: University of Groningen, 2007. [29] RICHARD V D H, DE RIDDERS. Influence of roadside infrastructure on driving behavior: Driving simulator study[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2018(1): 36-44. doi: 10.3141/2018-06 [30] WANG X, WANG T, TARKO A, et al. The influence of combined alignments on lateral acceleration on mountainous freeways: A driving simulator study[J]. Accident Analysis & Prevention, 2015(76): 110-117. http://www.tjsafety.cn/bgAdmin/htmledit/uploadfile/20150207154302789.pdf [31] 张敏, 张驰, 杨琼. 道路平、纵线形组合路段错视觉评价[J]. 中国科技论文, 2015, 10(16): 1900-1906. doi: 10.3969/j.issn.2095-2783.2015.16.007ZHANG M, ZHANG C, YANG Q. Evaluation on drivers'misperception of horizontal road combined with vertical curves[J]. China Sciencepaper, 2015, 10(16): 1900-1906. (in Chinese) doi: 10.3969/j.issn.2095-2783.2015.16.007 [32] 魏文海. 多因素交互作用下缩减车道对驾驶行为的影响[J]. 长安大学学报(自然科学版), 2020, 40(4): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004013.htmWEI W H. Influence of lane reduction on driving behavior characteristicsunder multi-factor interaction[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40 (4): 117-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004013.htm [33] LEE C, ABDELATY M. Testing effects of warning messages and variable speed limits on driver behavior using driving simulator[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2069(1): 55-64. doi: 10.3141/2069-08 [34] YAN X, WU J. Effectiveness of variable message signs on driving behavior based on a driving simulation experiment[J]. Discrete Dynamics in Nature and Society, 2014(2): 1-9. [35] 郭凤香, 熊坚, 秦雅琴, 等. 山区公路交通安全保障措施模拟评价[J]. 交通运输工程学报, 2011, 11(5): 120-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201105021.htmGUO F X, XIONG J, QIN Y Q, et al. Simulation evaluation of safeguard measure for traffic safety on montane highway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 120-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201105021.htm [36] 韩凤春, 马牧亭, 马晓东, 等. 基于驾驶模拟的平面交叉口出口交通标志设置方法研究[J]. 公路交通科技, 2016, 12 (11): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201611074.htmHAN F C, MA M T, MA X D, et al. Research on setting method of intersection exit traffic signs based on driving simulation[J]. Journal of Highway and Transportation Research and Development, 2016, 12(11): 217-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201611074.htm [37] SNOWDEN R J, STIMPSON N, RUDDLE R A. Speed perception fogs up as visibility drops[J]. Nature, 1998, 392 (6675): 450. doi: 10.1038/33049 [38] MUELLER A S, TRICK L M. Driving in fog: The effects of driving experience and visibility on speed compensation and hazard avoidance[J]. Accident Analysis & Prevention, 2012, 48(9): 472-479. http://pdfs.semanticscholar.org/5342/6609bb20d71afdc0b7e91a78d5acfe1959a4.pdf [39] 张驰, 贺亚龙, 黄星, 等. 雾天不同能见度条件下高速公路限速建议值研究[J]. 交通信息与安全, 2018, 36(5): 25-33. doi: 10.3963/j.issn.1674-4861.2018.05.004ZHANG C, HE Y L, HUANG X, et al. A study on speed limit of different visibility on expressways under foggy weather[J]. Journal of Transport Information and Safety, 2018, 36 (5): 25-33. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.05.004 [40] 赵晓华, 任贵超, 陈晨, 等. 基于驾驶模拟技术的不良气象条件对驾驶员跟驰行为的综合影响研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(6): 90-95. doi: 10.3969/j.issn.1674-0696.2019.06.16ZHAO X H, REN G C, CHEN C, et al. Research on the comprehensive influence of bad weather on driver following behavior based on driving simulation technology[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2019, 38(6): 90-95. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.06.16 [41] YAMAKOSHI T, ROLFE P, YAMAKOSHI Y, et al. A novel physiological index for driver's activation state derived from simulated monotonous driving studies[J]. Transportation Research part C: Emerging technologies, 2009, 17(1): 69-80. doi: 10.1016/j.trc.2008.09.002 [42] BELLA F. Driver perception of roadside configurations on two-lane rural roads: Effects on speed and lateral placement[J]. AccidentAnalysis & Prevention, 2013(50): 251-262. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0001457512001480&originContentFamily=serial&_origin=article&_ts=1437824451&md5=698001ff3a88fa2eb9dac35004cc527d [43] 荀双杰, 熊坚, 陈瑶, 等. 不同公路景观对行驶轨迹和车辆转向的影响[J]. 公路与汽运, 2016, 32(5): 53-56. doi: 10.3969/j.issn.1671-2668.2016.05.014XUN S J, XIONG J, CHEN Y, et al. The influence of different highway landscapes on driving trajectory and vehicle steering[J]. Highway and Motor Transport, 2016, 32(5): 53-56. (in Chinese) doi: 10.3969/j.issn.1671-2668.2016.05.014 [44] 李南初. 基于驾驶模拟实验的景观因素对驾驶行为的影响研究[D]. 成都: 西南交通大学, 2017.LI N C. Research on the influence of landscape factors on driving behavior based on driving simulation experiment[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese) [45] 朱顺应, 蒋若曦, 王红, 等. 机动车交通冲突技术研究综述[J]. 中国公路学报, 2020, 33(2): 15-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htmZHU S Y, JIANG R X, WANG H, et al. Review of research on traffic conflict techniques[J]. China Journal of Highway and Transport, 2020, 33(2): 15-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002002.htm [46] LI S, XIANG Q, MA Y, et al. Crash risk prediction modeling based on the traffic conflict technique and a microscopic simulation for freeway interchange merging areas[J]. International Journal of Environmental Research and Public Health, 2016, 13(11): 1157. doi: 10.3390/ijerph13111157 [47] ULAK M B, OZGUVEN E E, MOSES R, et al. Assessment of traffic performance measures and safety based on driver age and experience: A microsimulation based analysis for an unsignalized T-intersection[J]. Journal of traffic and transportation engineering(English edition), 2019, 6(5): 455-469. doi: 10.1016/j.jtte.2018.05.004 [48] 沈强儒, 杨少伟, 赵一飞, 等. 基于交通冲突小间距互通式立交区域安全性评价方法[J]. 系统工程理论与实践, 2015, 35(1): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201501018.htmSHEN Q R, YANG S W, ZHAO Y F, et al. Assessment method of small spacing interchange based on the trafic confict[J]. Systems Engineering Theory & Practice, 2015, 35 (1): 160-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201501018.htm [49] 戴骏晨. 基于交通冲突技术的高速公路互通立交交织区交通安全评价[D]. 南京: 东南大学, 2016.DAI J C. Evaluation of weaving section in freeway interchange with respect totraffic safety based on trapffic conflict technique[D]. Nanjing: Southeast University, 2016. (in Chinese) [50] 张勇刚. 道路交通事故再现及预防关键技术研究[D]. 广州: 华南理工大学, 2015.ZHANG Y G. Study on the key techonologies of traffic accident reconstruction and precaution[D]. Guangzhou: South China University of Technology, 2015. (in Chinese) [51] YAN X, ABDEL-ATY M, RADWAN E, et al. Validating a driving simulator using surrogate safety measures[J]. Accident Analysis & Prevention, 2008, 40(1): 274-288. http://www.researchgate.net/profile/Xuedong_Yan/publication/5635294_Validating_a_driving_simulator_using_surrogate_safety_measures/links/55acc09808ae481aa7ff7018.pdf [52] GUZEK M, LOZIA Z, ZDANOWICZ P, et al. Research on behaviour of drivers in accident situation conducted in driving simulator[J]. Journal of KONES, 2009(16): 173-183. http://yadda.icm.edu.pl/baztech/download/import/contents/BUJ5-0031-0057-httpwww_bg_utp_edu_plartjok12009jo20kones20200920no20120vol201620guzek.pdf [53] 蒋阳, 李平飞, 杨建军. 基于Pc-Crash的道路交通碰撞事故再现分析[J]. 成都大学学报(自然科学版), 2016, 35(3): 285-288. doi: 10.3969/j.issn.1004-5422.2016.03.020JIANG Y, LI P F, YANG J J. Application of pc-crash in different types of collision accident reconstruction[J]. Journal of Chengdu University(Natural Science), 2016, 35(3): 285-288. (in Chinese) doi: 10.3969/j.issn.1004-5422.2016.03.020 [54] 张瑞臻, 刘盛雄, 杨建伟, 等. 摩托车-行人事故中碰撞瞬间形态分析重建[J]. 重庆理工大学学报(自然科学), 2020, 34 (10): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202010031.htmZHANG R Z, LIU S X, YANG J W, et al. Formal analysis and reconstruction of collision in motorcycle-pedestrian collision accident[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(10): 225-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202010031.htm [55] BANKS S, CATCHESIDE P, LACK L, et al. Low levels of alcohol impair driving simulator performance and reduce perception of crash risk inpartially sleep deprived subjects[J]. SLEEP, 2004, (27): 1063-1067. http://www.onacademic.com/detail/journal_1000040450666910_8eb3.html [56] 侯莉莉, 方沂. 基于PC-CRASH的道路交通事故分析及再现研究[J]. 天津职业技术师范大学学报, 2013, 23(1): 46-49. doi: 10.3969/j.issn.2095-0926.2013.01.012HOU L L, FANG Y. Analysis and represent research of vehicle collision road traffic accidentbased on the pc-crash[J]. Journal of Tianjin University of Technology and Education, 2013, 23(1): 46-49. (in Chinese) doi: 10.3969/j.issn.2095-0926.2013.01.012 [57] 袁泉, 胡孟夏, 李一兵. 基于真实事故数据的人车碰撞事故场景设计与驾驶模拟实验[J]. 汽车安全与节能学报, 2012, 3(1): 19-25. doi: 10.3969/j.issn.1676-8484.2012.01.003YUAN Q, HU M X, LI Y B. Scenario design and driving simulation experiment of vehicle-to-pedestrain accidents based on real accident data[J]. Automotive Safety and Energy, 2012, 3(1): 19-25. (in Chinese) doi: 10.3969/j.issn.1676-8484.2012.01.003 [58] 陈亮. 基于驾驶人交通特性的汽车驾驶模拟器系统有效性研究[D]. 昆明: 昆明理工大学, 2021.CHEN L. Research on the validation of vehicle driving simulator based on driver's traffic characteristics[D]. Kunming: Kunming University of Science andTechnology, 2020. (in Chinese) [59] 赵蕾蕾, 李翀, 季林红, 等. 基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J]. 清华大学学报(自然科学版), 2020, 60(12): 993-998. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202012004.htmZHAO L L, LI C, JI L H, et al. EEG characteristics of motion sickness subjects in automatic driving mode based on virtual reality tests[J]. J Tsinghua Univ(Sci & Technol), 2020, 60(12): 993-998. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202012004.htm [60] 马兴. 智能网联汽车技术的发展研究[J]. 无线互联科技, 2021, 18(23): 88-89. doi: 10.3969/j.issn.1672-6944.2021.23.041MA X. Study on development of intelligent connected vehicle technology[J]. Wireless Internet Technology, 2021, 18 (23): 88-89. (in Chinese) doi: 10.3969/j.issn.1672-6944.2021.23.041