留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池安全检测传感器研究进展

赵星 王澎 抄佩佩 李宁 梁新苗 董红磊

赵星, 王澎, 抄佩佩, 李宁, 梁新苗, 董红磊. 锂离子电池安全检测传感器研究进展[J]. 交通信息与安全, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013
引用本文: 赵星, 王澎, 抄佩佩, 李宁, 梁新苗, 董红磊. 锂离子电池安全检测传感器研究进展[J]. 交通信息与安全, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013
ZHAO Xing, WANG Peng, CHAO Peipei, LI Ning, LIANG Xinmiao, DONG Honglei. An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries[J]. Journal of Transport Information and Safety, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013
Citation: ZHAO Xing, WANG Peng, CHAO Peipei, LI Ning, LIANG Xinmiao, DONG Honglei. An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries[J]. Journal of Transport Information and Safety, 2022, 40(6): 127-136. doi: 10.3963/j.jssn.1674-4861.2022.06.013

锂离子电池安全检测传感器研究进展

doi: 10.3963/j.jssn.1674-4861.2022.06.013
基金项目: 

国家重点研发计划项目 2021YFF0601100

详细信息
    作者简介:

    赵星(1986—), 博士.研究方向: 动力电池安全风险识别与故障诊断.E-mail: zhaoxing@caeri.com.cn

    通讯作者:

    董红磊(1982—), 博士, 高级工程师.研究方向: 汽车产品运行安全评价.E-mail: donghl@dpac.gov.cn

  • 中图分类号: TM911

An Overview on Research Progress of Sensors for Detecting Safety of Lithium Batteries

  • 摘要: 近年来, 由于热失控引发的锂离子电池安全事故频繁发生, 严重影响了新能源汽车运行安全, 作为保障车辆运行安全的有效手段, 对电池系统进行安全检测尤为重要。为提高锂离子电池的性能、延长循环寿命, 减少热失控安全事故的发生, 需要利用传感器技术对电池工作状态进行实时监控和检测。根据电池正常和异常工作状态下各物理量的变化, 常用的安全检测信号有应力应变、温度以及特征气体等。目前, 用于检测上述信号的安全检测传感器在电池状态检测方面已得到了广泛的应用。然而, 传统的传感器存在着体积大、灵敏度低、不耐电解液腐蚀等问题。对新型光纤布拉格光栅传感器、柔性薄膜传感器以及半导体式气体传感器的工作原理进行概述, 总结了上述3种传感器在锂离子电池应力应变、温度和气体检测的应用现状, 并从稳定性以及灵敏度等角度指出当前研究的不足, 如光纤布拉格光栅传感器电池体系适用性差, 插入式薄膜传感器影响电池性能, 半导体气体传感器精度和寿命低等问题。如何以经济、安全和实用的方式将传感器安装到电芯中, 减轻实际应用中传感器对电池循环性能的影响以及提高传感器信号传递的稳定性、精度、灵敏度, 是锂离子电池安全传感器开发面临的挑战, 仍然需要在传感器、电池设计等方面开展大量实验研究。

     

  • 图  1  FBG传感器工作原理

    Figure  1.  Working principle of FBG sensor

    图  2  带光纤光栅传感器的FO电缆在大尺寸xEV软包电池中的功能配置[13]

    Figure  2.  Function configuration of FO cable with fiber Bragg grating sensor in large size xEV soft pack battery[13]

    图  3  薄膜热电偶工作原理

    Figure  3.  Working principle of thin film thermocouple

    图  4  锂离子电池热失控过程,气体监测、电压监测、温度监测的预警效果对比[41]

    Figure  4.  Comparison of early warning effects of gas monitoring, voltage monitoring and temperature monitoring on thermal runaway of lithium ion batteries

  • [1] 李宗赞. 应力及材料塑性变形对锂离子电池性能的影响[D]上海: 上海大学, 2015.

    LI Z Z. Impacts of stress and plastic deformation on the performance of lithium ion batteries[D]. Shanghai: Shanghai University, 2015. (in Chinese)
    [2] CHRISTENSEN J, NEWMAN J. Stress generation and fracture in lithium insertion materials[J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319. doi: 10.1007/s10008-006-0095-1
    [3] WANG Q S, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012(208): 210-224.
    [4] LIAO Z, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019(436): 226879-226897.
    [5] PESARAN A, SANTHANAGOPALAN A, SANTHANAGOPALAN S, et al. Addressing the impact of temperature extremes on large format Li-ion batteries for vehicle applications[C]. The 30thInternational Battery Seminar, Florida: National Renewable Energy Laboratory Golden, Colorado, 2013.
    [6] LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017(150): 304-330.
    [7] 李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201601004.htm

    LI J Q, WU P E, ZHANG C N. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1): 22-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201601004.htm
    [8] FENG X N, ZHENG, S, REN D, et al., Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019(246): 53-64.
    [9] YANG G, LEI C, LI Y, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 2013, 46(9): 3166-3172. doi: 10.1016/j.measurement.2013.05.027
    [10] 褚维达, 童杏林, 冒燕, 等. 锂离子电池内部植入光纤光栅传感器存活实验研究[J]. 激光杂志, 2021, 42(8): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202108004.htm

    CHU W D, TONG X L, MAO Y, et al. Experimental study on survival of fiber Bragg grating sensor implanted in lithium ion battery[J]. Laser Journal, 2021, 42(8): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202108004.htm
    [11] SIRTHAWORNSANT S, NIYOMGOOL A, SUKSOMPONG P, et al. Fiber Bragg grating FBG sensing temperature characteristic and application in water and air[C]. International Conference on Electrical Engineering/electronics, Phuket, Thailand: IEEE, 2017.
    [12] YANG G, LEI T C, LI Y, et al. Real-time temperature measurement with fiber Bragg sensors in lithium batteries for safety usage[J]. Measurement, 2013(46): 3166-3172.
    [13] RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017(341): 466-473.
    [14] GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation[J]. Journal of Power Sources, 2017(341): 474-482.
    [15] SOMMER L W, KIESEL P, GANGULI A, et al. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors[J]. Journal of Power Sources, 2015, 296(20): 46-52.
    [16] SOMMER W L, RAGHAVAN A, SCHWART J, et al. Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors[J]. Journal of the Electrochemical Society, 2015, 162(14): A2664-A2669. doi: 10.1149/2.0361514jes
    [17] ALEKSANDRA F, MAX T, NICK W, et al. Preliminary study on integration of fiber optic bragg grating sensors in Li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies 2017, 10(7): 838-848. doi: 10.3390/en10070838
    [18] BAE C J, MANANDHAR A, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber bragg grating sensor[J]. Energy Technology Generation Conversion Storage Distribution, 2016, 4(7): 851-855.
    [19] NOVAIS S, NASCIMENTO M, GRANDE L, et al. Internal and external temperature monitoring of a li-Ion battery with fiber bragg grating sensors[J]. Sensors, 2016, 16(9): 1394-1402. doi: 10.3390/s16091394
    [20] MEYER J, NEDJAKOV A, DOERING A, et al. Fiber optical sensors for enhanced battery safety[C]. SPIE Sensing Technology+Applications, Baltimore, Maryland, USA, 2015.
    [21] 许守平, 胡娟, 徐翀, 等. 1种基于光纤光栅传感的锂离子电池温度测量方法[J]. 电器与能效管理技术, 2020(12): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DYDQ202012015.htm

    XU S P, HU J, XU C, et al. A temperature measurement method of civet ion battery based on fiber bragg grating sensing[J]. Electrical appliances and energy efficiency management technology, 2020(12): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYDQ202012015.htm
    [22] RAGHAVAN A, KIESEL P, SOMMER LW, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance[J]. Journal of Power Sources, 2017(341): 466-473.
    [23] AMIETSZAJEW T, MCTURK E, FLEMING J, et al. Understanding the limits of rapid charging using instrumented commercial 18650 high-energy Li-ion cells[J]. Electrochimica Acta, 2018(263): 346-352.
    [24] HUANG J, BLANQUER L A, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na/Li-ion cells via optical sensors[J]. Nature Energy, 2020(5): 674-683.
    [25] 刘振全, 王汉芝. 金属热电阻温度传感器在多路温度监控系统中的应用[J]. 传感器世界, 2006, 12(12): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ200612005.htm

    LIU Z Q, WANG H Z. The application of metal thermal resistance temperature sensor in multi-channel temperature control system[J]. Sensor World, 2006, 12(12): 25-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGSJ200612005.htm
    [26] LEE C Y, LEE S J, TANG M S, et, al. In-Situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors[J]. Sensors, 2011, 11(10): 9942-9950.
    [27] LEE C Y, LEE S J, CHEN Y H, et al. In-situ monitoring of temperature and voltage in lithium-ion battery by embedded flexible micro temperature and voltage sensor[J]. International Journal of Electrochemical Science, 2013, 8(2): 2968-2976.
    [28] LEE C Y, PENG H C, LEE S J, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015(15): 11485-11498.
    [29] LEE C Y, LEE S J, HUNG Y M, et al. Integrated microsensor for real-time microscopic monitoring of local temperature, voltage and current inside lithium ion battery[J]. Sensors and Actuators A Physical, 2017(253): 59-68.
    [30] ZHU S X, HAN J D, AN H Y, et al. A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries[J]. Journal of Power Sources, 2020(456): 227981-227986.
    [31] MUTYALA M K, ZHAO J, LI J, et al. In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples[J]. Journal of Power Sources, 2014(260): 43-49.
    [32] 潘小山, 杨滢璇, 王琴, 等. 用于锂电池原位温度监测的柔性薄膜传感器研究[J]. 传感器与微系统, 2018, 37(5): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805008.htm

    PAN X S, YANG Y X, WANG Q, et al. Research on flexible thin-film sensors applied for in-situ temperature monitoring of lithium ion battery[J]. Transducer and Microsystem Technologies, 2018, 37(5): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201805008.htm
    [33] MARTINY N, GEDER J, WANG Y, et al. Development of a thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell[C]. 2013 IEEE Sensors, Baltimore, MD, USA: IEEE, 2013.
    [34] MARTINY N, RHEINFLED A, GEDER J, et al. Development of an all Kapton-based thin-film thermocouple matrix for in-situ temperature measurement in a lithium ion pouch cell[J]. IEEE Sensors, 2014(14): 3377-3384.
    [35] SZ A, LE Y A, JW A, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021(516): 230669.
    [36] SHENG X Z LE Y, JIN B F, et al. In-situ obtained internal strain and pressure of the cylindrical Li-ion battery cell with silicon-graphite negative electrodes[J]. Journal of Energy Storage, 2021(42): 103049.
    [37] JIN Y, ZHENG Z, WEI D, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1-16.
    [38] 郭东亮, 刘洋, 肖鹏, 等. 储能电站用锂离子电池热失控早期预警参数研究[J]. 消防科学与技术, 2020, 39(8): 1156-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202008033.htm

    GUO D L, LIU Y, XIAO P, et al. Research on early warning parameters of thermal runaway of lithium ion battery for energy storage power station[J]. Fire Science and Technology, 2020, 39(8): 1156-1159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XFKJ202008033.htm
    [39] 王志荣. 基于气体监测的锂离子电池组热失控自动报警器及其监测方法: CN108008083A[P]. 2018-05-08.

    WANG Z R. Automatic thermal runaway alarm of lithium ion battery pack based on gas monitoring and its monitoring method: CN108008083A[P]. 2018-05-08. (in Chinese)
    [40] CUMMINGS S R, SWARTZ S L, FRANK N B, et al. Systems and methods for monitoring for a gas analyte. US20180003685A1[P]. US, 2017-06-29.
    [41] CUMMINGS S R, SWARTZ S L. Off-gas monitoring for lithium ion battery health and safety[R]. Wright Patterson AFB: Power Sources Committee Meeting, 2017.
    [42] 杨启帆, 马宏忠, 刘宝稳, 等. 锂离子电池气体故障特性分析及诊断方法[J]. 高电压技术, 2021, 47(9): 3315-3330. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109029.htm

    YANG Q F, MA H Z, LIU B W, et al. Gas fault characteristics analysis and diagnosis method of lithium-ion battery[J]. High Voltage Engineering, 2021, 47(9): 3315-3330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109029.htm
    [43] 刘强, 李晨, 黄翔, 等. 基于VOC气体的锂离子电池异常状态的评估方法及系统: CN113671385A[P]. 2021-11-19.

    LIU Q, LI C, HUANG Q, et al. Evaluation method and system for abnormal state of lithium ion battery based on VOC gas: CN113671385A[P]. 2021-11-19. (in Chinese)
    [44] 葛磊, 姚冰, 郭玉坤. 1种锂电池热失控监测告警传感装置: CN111799248A[P]. 2020-10-20.

    GE L, YAO B, GUO Y K. The utility model relates to a lithium battery thermal runaway monitoring and alarm sensing device: CN111799248A[P]. 2020-10-20. (in Chinese)
  • 加载中
图(4)
计量
  • 文章访问数:  983
  • HTML全文浏览量:  388
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回