A Timetable Optimization Method for Urban Train Transit Based on Virtual Coupling
-
摘要: 针对高峰时段城市轨道交通客流与运力不匹配问题,考虑城市轨道交通客流时空分布特征、交通过饱和状态和车场车底数量限制,提出了基于虚拟编组的城轨列车时刻表优化方法。构造动态客流累计需求函数,预测不同时段客流量;考虑乘客需求、发车间隔、运行时间、车底数量、车底接续等约束条件,以列车在首站的发车时刻和各车次的编组方案为决策变量,以乘客平均等待时间与列车走行里程最小化为优化目标,建立了基于虚拟编组的城轨列车时刻表优化模型。针对原问题包含大量耦合约束条件,利用拉格朗日松弛算法将耦合性约束吸收至目标函数,将原问题分解为2个独立路径的子问题,降低问题的复杂度;再利用商业求解器求解子问题的下界解,并设计启发式算法求解子问题的上界可行解,得到原问题解的上下界。以上海地铁某线路为算例进行验证,结果表明:在高峰时段,所提动态客流累计需求函数与客流实际到达规律拟合度较高;固定编组模式下,非均匀发车时刻表相比于均匀发车时刻表,可降低24.15%的乘客平均等待时间和51.73%的滞留乘客等待时间;而所提虚拟编组列车时刻表相比于固定编组模式下非均匀发车时刻表,不仅可减少0.33%的列车运行里程,还可进一步减少16.95%的乘客平均等待时间和6.03%的滞留乘客等待时间。Abstract: To solve the mismatch between train capacity and demand during peak hours, a timetable optimization method for urban train transit based on virtual coupling technical is proposed, incorporating spatiotemporal characteristics of passenger flow, oversaturation of trains during peak hours, and the limitation of the number of rolling stocks. A dynamic passenger flow cumulative demand (PFCD) function is proposed to pedict the passenger flow at different hours. Then, the schedule optimization model for urban rail transit based on the virtual coupling is established, in which, the departure time of trains at the first station and the marshaling scheme of each train are decision variables and the average waiting time (AWT) of passengers and the train travel mileage (TTM) are minimized under constraints such as passenger demand in different hours, departure interval, running time, number of rolling stocks, rolling stock circulation, etc. Lagrangian relaxation is introduced to reduce the complexity of the problem by absorbing the coupling constraints into the objective, and the original problem is decomposed into two independent subproblems. By using a commercial solver and the designed heuristic algorithm, the lower bound and upper bound of the problems are found. A metro line in Shanghai Metro is employed for demonstration, and the results show that: ① the proposed dynamic PFCD function fits the arrival pattern of passengers well during the peak hours; ② compared with the uniform departure schedule, the non-uniform departure (non-UD) schedule under the fixed train composition (FTC) mode can reduce the AWT of passengers by 24.15% and the waiting time of stranded passengers by 51.73%; ③ compared with the non-UD schedule under the FTC mode, the train timetable based on virtual coupling can reduce not only the train running kilometers by 0.33% but also the AWT of passengers and the waiting time of stranded passengers by 16.95% and 6.03%, respectively.
-
表 1 符号说明
Table 1. Symbol description
符号 含义 i, j 车站的索引 m /座 单条路径上的车站总数 S 车站的集合,S = {1 2 m} f 路径索引,f = 1为上行、f = 2为下行 k 列车车次的索引 Nf /列 在所研究时段内路径f上的总运行车次 nf /辆 在所研究时段内路径f上的可用车底数量 Kf 路径f上列车车次的集合,Kf = {1, 2, 3, … ,Nf } dijf (t) 路径f上t时刻从i站到j站的累计需求函数 Tk, fi /min 决策变量,路径f上第k车次在第i站的发车时刻 T /min 总的研究时间 hmin /min 最小发车间隔 hmax /min 最大发车间隔 tz /min 折返时间 tyii+1 /min 列车从i站到i + 1站的运行时间 twi /min 列车在i站的停站时间 αk, fi /人 路径f上第i站能乘上第k车次的乘客数 qfij /人 路径f上从第i站到第j站的乘客数 Qfi /人 路径f上第i站的总上车乘客数 pk, fi /人 路径f上第k车次在第i站的下车乘客数 Ak, fi /人 路径f上第k车次在第i - 1站出发时的在车乘客数 φk, fi /人 路径f上第i站未能乘上第k车次的滞留乘客数 D /(人/辆) 列车定员 L /km 单向线路总长度 Ω /次 选代次数 cfk /辆 决策变量,路径f上第k车次的列车编组数量 cmin/辆 最小编组数量 cmax/辆 最大编组数量 表 2 上行方向站间距及运行时间
Table 2. The station spacing and running time in the upward direction
区间编号 长度/km 运行时间/min 区间编号 长度/km 运行时间/min 1 1.9 3 7 2.3 4 2 2.0 3 8 2.9 5 3 1.9 3 9 2.4 4 4 1.8 3 10 4 6 5 1.3 2 11 2.3 4 6 2.1 3 12 1.6 2 表 3 上行方向列车停站时间
Table 3. The dwell time of upward direction train
车站编号 时间/min 车站编号 时间/min 1 1 8 0.7 2 0.5 9 0.5 3 0.3 10 0.3 4 0.5 11 0.8 5 0.4 12 0.6 6 0.6 13 1 7 0.4 表 4 各车次编组情况
Table 4. The grouping of each train
车次编号 上行编组辆数/辆 下行编组辆数/辆 车次编号 上行编组辆数/辆 下行编组辆数/辆 1 4 4 26 8 5 2 4 4 27 8 5 3 4 4 28 8 5 4 4 4 29 8 6 5 4 4 30 8 5 6 4 4 31 8 7 7 4 4 32 8 8 8 4 4 33 8 6 9 4 4 34 8 8 10 4 4 35 8 8 11 4 4 36 8 8 12 4 4 37 8 8 13 4 7 38 6 8 14 5 5 39 7 8 15 4 4 40 5 8 16 4 5 41 8 8 17 8 4 42 8 7 18 4 5 43 8 7 19 5 4 44 8 5 20 7 4 45 8 8 21 8 4 46 6 6 22 8 4 47 8 6 23 8 5 48 6 5 24 8 4 49 8 8 25 8 5 50 8 8 表 5 各运营模式下的运行指标
Table 5. Running indices under various operating modes
运营模式 乘客平均等待时间/min dis1 /% 列车走行里程数/km dis2 /% 车底平均利用率/% dis3 /% 滞留乘客等待时间/min dis4 /% 模式1 16.824 6 24.15 15 900 0.00 0.819 7 -11.02 9 173 639.11 51.73 模式2 13.552 3 15 900 0.921 2 6 046 122.36 模式3 11.255 7 -16.95 15 847 -0.33 0.934 5 1.44 5 681 252.90 -6.03 表 6 不同权重系数的最优目标值
Table 6. Optimal target values for different weights
案例 σ1 σ2 目标函数值 平均等待时间/min 列车走行里程数/km 1 0.000 1 0.999 9 12.78 11.190 2 15 953.0 2 0.001 0.999 27.69 12.572 6 15 131.5 3 0.01 0.99 156.38 14.753 2 14 177.5 -
[1] 张海, 吕苗苗, 倪少权. 基于非均匀发车间隔的大小交路时刻表优化模型[J]. 交通运输系统工程与信息, 2022, 22 (6): 224-233.ZHANG H, LYU M M, NI S Q. Train timetable optimization model for full-length and short-turn routings with irregular departure intervals[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 224-233. (in Chinese) [2] ZHAO S, WU R F, SHI F. A line planning approach for high-speed railway network with time-varying demand[J]. Computers & Industrial Engineering, 2021, 160: 107547. [3] 孙国锋, 景云, 马亚雯. 考虑旅客多维出行需求的动态列车开行方案优化[J]. 铁道学报, 2022, 44(11): 10-18. doi: 10.3969/j.issn.1001-8360.2022.11.002SUN G F, JING Y, MA Y W. Optimization of dynamic train line planning considering multi-dimensional travel demand of passengers[J]. Journal of the China Railway Society, 2022, 44(11): 10-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.11.002 [4] NIU H M, ZHOU X S. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions[J]. Transportation Research Part C: Emerging technologies, 2013, 36(11): 212-230. [5] BARRENA E, CANCA D, COELHO L C, et al. Single-line rail rapid transit timetabling under dynamic passenger demand[J]. Transportation Research Part B: Methodological, 2014, 70: 134-150. doi: 10.1016/j.trb.2014.08.013 [6] SHANG P, LI R M, YANG LY. Optimization of urban single-line metro timetable for total passenger travel time under dynamic passenger demand[J]. ProcediaEngineering, 2016, 137: 151-160. [7] 许得杰, 巩亮, 曾俊伟. 考虑客流时变需求的大小交路列车时刻表优化模型[J]. 交通运输系统工程与信息, 2019, 19 (2): 122-129.XU D J, GONG L, ZENG J W. Modeling of train timetable with full-length and short-turn routing considering the time-varying demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 122-129. (in Chinese) [8] 周文梁, 黄裕, 邓连波. 考虑运行节能和车底运用的城轨时刻表优化[J]. 铁道科学与工程学报, 2023, 20(2): 473-482.ZHOU W L, HUANG Y, DENG L B. Optimization of train schedule for urban rail considering operation energy-saving and train circulation planning[J]. Journal of Railway Science and Engineering, 2023, 20(2): 473-482. (in Chinese) [9] 陈然, 吴首蓉, 路超. 疫情下城市轨道交通车底运用计划编制[J]. 中国安全科学学报, 2022, 32(增刊1): 51-56.CHEN R, WU S R, LU C. Study on generating train stock utilization plans during epidemic period[J]. China Safety Science Journal, 2022, 32(S1): 51-56. (in Chinese) [10] 金波, 郭佑星, 王青元, 等. 考虑大小交路的时刻表与车底运用计划一体化编制方法[J]. 中国铁道科学, 2022, 43(3): 173-181. doi: 10.3969/j.issn.1001-4632.2022.03.19JIN B, GUO Y X, WANG Q Y, et al. Integrated scheduling method of timetable and rolling stock assignment scheme considering long and short routing[J]. China Railway Science, 2022, 43(3): 173-181. (in Chinese) doi: 10.3969/j.issn.1001-4632.2022.03.19 [11] 赵冰倩. 考虑列车运用均衡性的城市轨道交通车底运用计划优化方法研究[D]. 北京: 北京交通大学, 2021.ZHAO B Q. Optimization methods on the connection plan of rolling stocks for urban rail transit considering utilization equilibrium[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese) [12] 周厚盛, 戚建国, 杨立兴, 等. 基于灵活编组的城轨车底运用计划及鲁棒客流控制策略[J]. 控制与决策, 2023, 38(9): 2663-2671.ZHOU H S, QI J G, YANG L X, et al. Joint optimization for rolling stock circulation plan based on flexible train composition mode and robust passenger flow control strategy on urban rail transit lines[J]. Control and Decision, 2023, 38(9): 2663-2671. (in Chinese) [13] 杨中平, 游婷, 束天成, 等. 列车虚拟编组技术的研究现状及发展[J]. 都市快轨交通, 2023, 36(1): 14-21. doi: 10.3969/j.issn.1672-6073.2023.01.003YANG Z P, YOU T, SHU T C, et al. Research status and development of virtual coupling technology[J]. Urban Rapid Rail Transit, 2023, 36(1): 14-21. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.003 [14] MICHAEL N, FRANCESCO C. Dynamic train unit coupling and decoupling at cruising speed: systematic classification, operational potentials, and research agenda[J]. Journal of Rail Transport Planning & Management, 2021, 18(8): 100241. [15] 杨安安, 孙继营, 汪波, 等. 基于虚拟编组技术的大小交路列车开行方案优化[J]. 北京交通大学学报, 2022, 46(4): 9-14.YANG A A, SUN J Y, WANG B, et al. Optimization of virtual-coupling-orientated train operation plan based on full-length and short-turn routing[J]. Journal of Beijing Jiaotong University, 2022, 46(4): 9-14. (in Chinese) [16] 韩宝明, 龙宇轩, 张琦, 等. 基于虚拟编组的市域列车运行组织优化研究[J]. 都市快轨交通, 2023, 36(1): 43-50. doi: 10.3969/j.issn.1672-6073.2023.01.007HAN B M, LONG Y X, ZHANG Q, et al. Optimization of suburban train operation organization based on virtual coupling[J]. Urban Rapid Rail Transit, 2023, 36(1): 43-50. (in Chinese) doi: 10.3969/j.issn.1672-6073.2023.01.007 [17] 许可. 虚拟编组条件下城市轨道交通Y型线路列车交路方案优化研究[D]. 北京: 北京交通大学, 2022.XU K. Train traffic optimization scheme of urban rail transit Y-type line under virtual coupling condition[D]. Beijing: Beijing Jiaotong University, 2022. (in Chinese) [18] 赖子良, 王江锋, 李晔, 等. 车车通信环境下考虑交通拥堵状态的碰撞时间混合分布建模研究[J]. 交通信息与安全, 2022, 40(2): 53-62. doi: 10.3963/j.jssn.1674-4861.2022.02.007LAI Z L, WANG J F, LI Y, et al. A time-to-collision hybrid distribution model considering congestion under a vehicle-to-vehicle communication environment[J]. Journal of Transport Information and Safety, 2022, 40(2): 53-62. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.02.007 [19] 许得杰. 城市轨道交通大小交路列车开行方案优化研究[D]. 北京: 北京交通大学, 2016.XU D J. Optimization for train plan of full-length and short-turn routing in urban rail transit[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese) [20] 刘泓茗, 刘皓玮, 郑泽熙. 基于时空协同优化的多目标城市轨道交通延误恢复研究[J]. 铁道运输与经济, 2023, 45(1): 109-114.LIU H M, LIU H W, ZHENG Z X. Research on multi-objective urban rail transit delay recovery based on spatio-temporal collaborative optimization[J]. Railway Transport and Economy, 2023, 45(1): 109-114. (in Chinese) [21] 革新, 张玉召. 考虑驾驶策略的高速列车运行图节能优化方法[J]. 交通信息与安全, 2022, 40(6): 118-126, 136. doi: 10.3963/j.jssn.1674-4861.2022.06.012GE X, ZHANG Y Z. An energy-saving method based on optimized timetable for high-speed trains considering driving strategy[J]. Journal of Transport Information and Safety, 2022, 40(6): 118-126, 136. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.012 [22] 刘人铭. 基于客流需求驱动的城市轨道交通列车时刻表与车底衔接计划协同优化方法研究[D]. 北京: 北京交通大学, 2019.LIU R M. Collaborative optimization for demand-driven train timetable and train connection plan in urban rail system[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)