Vulnerability Assessment and Recovery Strategies for Container Shipping Networks from a Resilience Perspective
-
摘要: 现有航运网络脆弱性评估方法和恢复策略存在一定局限性,主要表现为:评估方法单一,难以全面反映航运网络的复杂性;未综合考虑实际运营能力和空间距离等关键因素,导致恢复策略应对突发事件的效果不佳。针对上述问题,从拓扑结构和实际运营这2个方面对航运网络脆弱性进行了综合评价,提出了基于变异系数法多维度航运网络脆弱性评价指标,并设计了1种基于备份港口排序的恢复策略,其中,备份港口排序综合考虑了空间距离、港口运输能力和泊位数量等因素。通过引入了动态评价框架、调整脆弱性指标权重、优化备份港口选择和流量分配策略等,提升了评估与恢复策略的准确性和有效性。以2020年中欧、中地、中美东、中美西集装箱航运网络为例,构建了集装箱航运网络拓扑图,并分析了航线的脆弱性和运力波动,结果表明:采用单港口备份恢复策略时,航运网络韧性提升11.6%;采用双港口备份恢复策略时,航运网络韧性提升31.5%。综上,本文提出了集装箱航运网络脆弱性评估方法和基于备份港口排序的恢复策略,合理确定备份港口数量,实现对失效港口流量的有效重分配,为提高航运网络韧性提供了新的途径,也凸显了脆弱性评估和备份恢复策略在航运网络中的重要性。Abstract: The existing vulnerability evaluation of shipping networks and recovery strategies are suffering from two limitations. One is using a single assessment method, simplifying the complexity of the shipping network; the other is neglecting actual operational capabilities and spatial distance in recovery strategies, resulting in poor effectiveness in emergencies. To fill the gaps, a comprehensive evaluation of the vulnerability of the shipping network is proposed, considering the topology of the network and its actual operational capacity; multi-dimensional vulnerability evaluation indices are found based on the coefficient of variation method; recovery strategy is designed based on the backup-port rank that incorporates the spatial distance, the capacity of ports, and the number of berths. Several innovations to the model and algorithm are introduced, including a dynamic evaluation framework, adaptive weights for vulnerability indicators, and optimizations for backup port selection and traffic diversion in emergencies. To validate the proposed method, container shipping networks of China-Europe, China-Mediterranean, China-US (East Coast), and China-US (West Coast) in 2020 are introduced, topology maps of these networks are developed, and the vulnerability and dynamic capacity of these networks are analyzed. The findings show that the resilience of the shipping network is improved by 11.6% when a single port backup recovery strategy is implemented, and by 31.5% when a dual port backup recovery strategy is adopted. In summary, the proposed vulnerability assessment method and the recovery strategy based on backup-port ranking provide a novel way to improve the resilience of the shipping networks, highlighting the importance of vulnerability assessment and backup recovery strategies in shipping networks.
-
表 1 宁波港备份港口
Table 1. Ningbo Port Backup Port
失效港口 备份港口 失效港口集装箱吞吐量/万TEU 距离/km 泊位数量 得分 排名 宁波港 上海港 4 330 43.12 1 024 52.52 1 深圳港 2 577 855.33 168 34.08 2 青岛港 2 100 697.08 119 27.88 3 厦门港 1 112 690.01 182 15.90 4 青岛港 1 045 816.60 93 14.35 5 注:TEU表示港口集装箱吞吐量数据来自交通运输部。 表 2 中国区域备份港口选择结果
Table 2. Results of the selection of regional backup ports in China
失效港口 备份港口 失效港口集装箱吞吐量/万TEU 备份港口集装箱吞吐量/万TEU 备份港口运力分配/% 宁波港 上海港 2 753 4 330 100 青岛港 4 330 2 100 48.5 上海港 厦门港 1 112 25.7 深圳港 2 577 25.8 深圳港 青岛港 2 577 2 100 82 大连港 876 18 青岛港 深圳港 2 100 2 577 100 厦门港 香港港 1 112 1 836 100 高雄港 厦门港 1 045 1 112 100 表 3 欧洲区域部分备份港口选择结果
Table 3. Results of the selection of selected backup ports in the European region
失效港口 备份港口 失效港口集装箱吞吐量/万TEU 备份港口集装箱吞吐量/万TEU 备份港口运力分配/% 鹿特丹港 安特卫普港 1 481 1 186 80 泽布吕赫港 180 12 敦刻尔克港 51.5 3.5 费利克斯托港 378 4.5 安特卫普港 泽布吕赫港 1 186 180 15 敦刻尔克港 51.5 4 费利克斯托港 378 31.9 汉堡港 928 41.9 不来梅哈芬港 汉堡港 487 928 100 表 4 不同方案释义
Table 4. Interpretation of the different scenarios
方案 节点失效前 节点失效后 节点备份后 方案A 原始网络 宁波港、鹿特丹港同时失效后的网络 基于宁波港的备份网络 方案B 原始网络 宁波港、鹿特丹港同时失效后的网络 基于鹿特丹港的备份网络 方案C 原始网络 宁波港、鹿特丹港同时失效后的网络 基于宁波港、鹿特丹港的备份网络 表 5 加权网络效率
Table 5. Weighted Network Efficiency
状态 方案A 方案B 方案C 失效前 0.406 0.406 0.406 失效后 0.376 0.376 0.376 备份后 0.392 0.390 0.528 表 6 通航率
Table 6. navigability rate
状态 方案A 方案B 方案C 连边数 通航率 连边数 通航率 连边数 通航率 失效前 194 1.00 194 1.00 194 1.00 失效后 128 0.66 128 0.66 128 0.66 备份后 160 0.82 160 0.82 196 1.00 -
[1] WAN C, TAO J, YANG Z, et al. Evaluating recovery strategies for the disruptions in liner shipping networks: a resilience approach[J]. International Journal of Logistics Management, 2022, 33(2): 389-409. [2] POO M C-P, YANG Z. Optimising the resilience of shipping networks to climate vulnerability[J]. Maritime Policy & Management, 2022, 51(1): 15-34. [3] 张欣, 李双菲, 孙代源. 中欧集装箱海铁复合运输网络脆弱性分析[J]. 交通信息与安全, 2023, 41(3): 48-58.ZHANG X, LI S F, SUN D Y. Vulnerability analysis of China-Europe container sea-rail intermodal transport network[J]. Journal of Transport Information and Safety, 2023, 41(3): 48-58. (in Chinese) [4] TOVAR B, HERNáNDEZ R, RODRíGUEZ-DéNIZ H. Container port competitiveness and connectivity: the canary islands main ports case[J]. Transport Policy, 2015, 38: 40-51. doi: 10.1016/j.tranpol.2014.11.001 [5] 徐梦俏. 基于"区域—港口—货流"的世界集装箱海运网络复杂性相关研究[D]. 大连: 大连海事大学, 2017.XU M Q. Complexity in the global container shipping network: regions, ports, and flows[D]. Dalian: Dalian Maritime University, 2017. (in Chinese) [6] 王列辉, 叶斐, 郑渊博. 中美集装箱航运网络格局演化与脆弱性评估[J]. 经济地理, 2020, 40(5): 136-144.WANG L H, YE F, ZHENG Y B. The assessment of Sino-US container shipping network evolution and vulnerability[J]. Economic Geography, 2020, 40(5): 136-144. (in Chinese) [7] 吴迪, 王诺, 吴暖, 等. 主航道中断背景下集装箱海运网络的脆弱性及其对中国的影响[J]. 地理研究, 2017, 36(4): 719-730.WU D, WANG N, WU N, et al. The impact of main channel interruption on vulnerability of container shipping network and China container shipping[J]. Geographical Research, 2017, 36(4): 719-730. (in Chinese) [8] JIANG L P, WANG G S, FENG X J, et al. Study on cascading failure vulnerability of the 21st-century maritime silk road container shipping network[J]. Journal of Transport Geography, 2024, 117: 103891. doi: 10.1016/j.jtrangeo.2024.103891 [9] WU D, WANG N, YU A. Vulnerability analysis of global container shipping liner network based on main channel disruption[J]. Maritime Policy & Management, 2019, 46(4): 394-409. [10] WU Z, CHENG S, XU K, et al. Ecological network resilience evaluation and ecological strategic space identification based on complex network theory: a case study of Nanjing city[J]. Ecological Indicators, 2024, 158: 111604. doi: 10.1016/j.ecolind.2024.111604 [11] KOU L B, ZHAO H P. Regional resilience assessment based on city network risk propagation and cooperative recovery[J]. Cities, 2024, 147: 104856. doi: 10.1016/j.cities.2024.104856 [12] GOKALP C, PATIL P N, BOYLES S D. Post-disaster recovery sequencing strategy for road networks[J]. Transportation Research Part B: Methodological, 2021, 153: 228-245. doi: 10.1016/j.trb.2021.09.007 [13] 王哲, 李建华, 康东, 等. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26, 46.WANG Z, LI J H, KANG D, et al. Review on strategies enhancing the robustness of complex network[J]. Complex Systems and Complexity Science, 2020, 17(3): 1-26, 46. (in Chinese) [14] LI S H, TANG L, LIU J G, et al. Vessel schedule recovery strategy in liner shipping considering expected disruption[J]. Ocean & Coastal Management, 2023, 237: 106514. [15] ASGHARI M, JABER M Y, MIRZAPOUR AL-E-HASHEM, S M J. Coordinating vessel recovery actions: analysis of disruption management in a liner shipping service[J]. European Journal of Operational Research, 2023, 307: 627-644. [16] TIAN L, DI Z R, YAO H. Effect of distribution of weight on the efficiency of weighted networks[J]. Acta Physica Sinica, 2011, 60(2): 028901. [17] STERGIOPOULOS G, VALVIS E, MITRODIMAS D, et al. Analyzing congestion interdependencies of ports and container ship routes in the maritime network infrastructure[J]. IEEE Access, 2018, 6: 63823-63832. [18] GADE K. A non-singular horizontal position representation[J]. Journal of Navigation, 2010, 63(3): 395-417. [19] ELKAFAS A G, RIVAROLO M, MASSARDO A F. Environmental economic analysis of speed reduction measure onboard container ships[J]. Environmental Science and Pollution Research, 2023, 30(21): 59645-59659. [20] ZHEN Z. Competitiveness model of Chinese port manufacturing industry based on global value chain[J]. Journal of Coastal Research, 2020, 103: 701-704. [21] CARRESE S, PETRELLI M, RENNA A. A new approach for the identification of strategic Italian ports for container traffic[J]. Transport Policy, 2022, 120: 47-55.