Citation: | YANG Pengqiang, ZHANG Yanwei, HU Zhaozheng. A Lane Detection Algorithm Based on Improved RepVGG Network[J]. Journal of Transport Information and Safety, 2022, 40(2): 73-81. doi: 10.3963/j.jssn.1674-4861.2022.02.009 |
[1] |
裴玉龙, 迟佰强, 吕景亮, 等. "自动+人工" 混合驾驶环境下交通管理研究综述[J]. 交通信息与安全, 2021, 39(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202105004.htm
PEI Y L, CHI B Q, LYU J L, et al. An overview of traffic management in "Automatic+Manual" driving environment[J]. Journal of Transport Information and Safety, 2021, 39(5): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202105004.htm
|
[2] |
WANG P, XUE J R, DOU J, et al. PCRLaneNet: Lane marking detection via point coordinate regression[C]. 32nd IEEE Intelligent Vehicles Symposium(IV), NAGOYA, JAPAN: IEEE, 2021.
|
[3] |
肖进胜, 程显, 李必军, 等. 基于Beamlet和K-means聚类的车道线识别[J]. 四川大学学报(工程科学版), 2015, 47(4): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201504014.htm
XIAO J S, CHENG X, LI B J, et al. Lane detection algorithm based on Beamlet transformation and K-means clustering[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(4): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201504014.htm
|
[4] |
王海, 蔡英凤, 林国余, 等. 基于方向可变Haar特征和双曲线模型的车道线检测方法[J]. 交通运输工程学报, 2014, 14(5): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405019.htm
WANG H, CAI Y F, LIN G Y, et al. Lane line detection method based on orientation variance Haar feature and hyperbolic model[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 119-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201405019.htm
|
[5] |
PAN X G, SHI J P, LUO P, et al. Spatial as deep: Spatial cnn for traffic scene understanding[C]. 32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA: AAAI, 2018.
|
[6] |
NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: An instance segmentation approach[C]. 29th IEEE Intelligent Vehicles Symposium(IV), Changshu, China: IEEE, 2018.
|
[7] |
蔡英凤, 张田田, 王海, 等. 基于实例分割和自适应透视变换算法的多车道线检测[J]. 东南大学学报(自然科学版), 2020, 50(4): 775-781. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004023.htm
CAI Y F, ZHANG T T, WANG H, et al. Multi-lane detection based on instance segmentation and adaptive perspective transformation[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 775-781. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202004023.htm
|
[8] |
LI X, LI J, HU X L, et al. Line-cnn: End-to-end traffic line detection with line proposal unit[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(1): 248-258.
|
[9] |
田晟, 张剑锋, 张裕天, 等. 基于扩张卷积金字塔网络的车道线检测算法[J]. 西南交通大学学报, 2020, 55(2): 386-392+416. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002020.htm
TIAN S, ZHANG J F, ZHANG Y T, et al. Lane detection algorithm based on dilated convolution pyramid network[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 386-392+416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002020.htm
|
[10] |
QIN Z Q, WANG H Y, LI X. Ultra fast structure-aware deep lane detection[C]. 16th European Conference on Computer Vision (ECCV), Glasgow, UK: Springer, 2020.
|
[11] |
YOO S, LEE H S, MYEONG H, et al. End-to-end lane marker detection via row-wise classification[C]. 2020IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), Seattle, WA, USA: IEEE, 2020.
|
[12] |
邓天民, 王琳, 杨其芝, 等. 基于改进SegNet算法的车道线检测方法[J]. 科学技术与工程, 2020, 20(36): 14988-14993. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202036031.htm
DENG T M, WANG L, YANG Q Z, et al. Lane line detection method based on improved SegNet network algorithm[J]. Science Technology and Engineering, 2020, 20(36): 14988-14993. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202036031.htm
|
[13] |
ROMERA E, ALVAREZ J M, BERGASA L M, et al. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1): 263-272.
|
[14] |
DING X H, ZHANG X Y, MA N N, et al. Repvgg: Making vgg-style convnets great again[C]. 2021IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, TN, USA: IEEE, 2021.
|
[15] |
HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA: IEEE, 2016.
|
[16] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations(ICLR), San Diego, CA, USA: ICLR, 2015.
|
[17] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. 2018IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018.
|
[18] |
DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]. 2009IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA: IEEE, 2009.
|
[19] |
CHEN Z P, LIU Q F, LIAN C F. Pointlanenet: Efficient end-to-end cnns for accurate real-time lane detection[C]. 30th IEEE intelligent vehicles symposium(IV), Paris, France: IEEE, 2019.
|
[20] |
HOU Y N, MA Z, LIU C X, et al. Learning lightweight lane detection cnns by self attention distillation[C]. IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea(South): IEEE, 2019.
|
[21] |
SU J M, CHEN C, ZHANG K, et al. Structure guided lane detection[C]. 30th International Joint Conference on Artificial Intelligence, Montreal-themed Virtual Reality: IJCAI, 2021.
|
[22] |
TABELINI L, BERRIEL R, PAIXAO T M, et al. Keep your eyes on the lane: Real-time attention-guided lane detection[C]. 2021IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, TN, USA: IEEE, 2021.
|