Citation: | CHANG Zhenting, XIAO Zhihao, ZHANG Wenjun, ZHANG Ronghui, YOU Feng. A Method for Detecting Edge Lines of Traveling Lanes of Urban Roads Based on Grid Classification and Vertical-horizontal Attention[J]. Journal of Transport Information and Safety, 2023, 41(3): 92-102. doi: 10.3963/j.jssn.1674-4861.2023.03.010 |
[1] |
裴玉龙, 迟佰强, 吕景亮, 等. "自动+人工"混合驾驶环境下交通管理研究综述[J]. 交通信息与安全, 2021, 39(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2021.05.001
PEI Y L, CHI B Q, LV J L, et al. An overview of traffic management in "Automatic + Manual" driving environment[J]. Journal of Transport Information and Safety, 2021, 39(5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.05.001
|
[2] |
梁乐颖. 基于深度学习的车道线检测算法研究[D]. 北京: 北京交通大学, 2018.
LIANG L Y. Lane detection algorithm based on deep learning[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[3] |
罗杨. 复杂环境下的车道线检测[D]. 成都: 电子科技大学, 2020.
LUO Y. Lane detection under complicated environment[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
|
[4] |
陈立潮, 徐秀芝, 曹建芳, 等. 引入辅助损失的多场景车道线检测[J]. 中国图象图形学报, 2020, 293(9): 168-179.
CHEN L C, XU X Z, CAO J F, et al. Multi-scenario lane line detection with the auxiliary loss[J]. Chinese Journal of Image Graphics, 2020, 293(9): 168-179. (in Chinese)
|
[5] |
甄先通, 黄坚, 王亮, 等. 自动驾驶汽车环境感知[M]. 北京: 清华大学出版社, 2020.
ZHEN X T, HUANG J, WANG L, et al. Self-driving vehicle environment perception[M]. Beijing: Tsinghua University Press, 2020. (in Chinese)
|
[6] |
LEE S, KIM J, YOON J S, et al. VPGNet: vanishing point guided network for lane and road marking detection and recognition[C]. 2017 IEEE International Conference on Computer Vision(ICCV), Venice, Italy: IEEE, 2017.
|
[7] |
PAN X, SHI J, LUO P, et al. Spatial as deep: spatial CNN for traffic scene un-der-standing[C]. AAAI Conference on Artificial Intelligence, New Orleans, LA, USA: AAAI, 2018.
|
[8] |
PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv preprint arXiv: 1606. 02147, 2016.
|
[9] |
HOU Y, MA Z, LIU C, et al. Learning lightweight lane detection CNNs by self attention distilla-tion[C]. 2019 IEEE/CVF International Confe-rence on Computer Vision(ICCV), Long Beach, CA, USA: IEEE, 2019.
|
[10] |
杨鹏强, 张艳伟, 胡钊政. 基于改进RepVGG网络的车道线检测算法[J]. 交通信息与安全, 2022(2): 40. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202202009.htm
YANG P Q, ZHANG Y W, HU Z Z. A lane detection algorithm based on improved RepVGG network[J]. Journal of Transport Information and Safety, 2022(2): 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202202009.htm
|
[11] |
DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style convnets great again[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, TN, USA: IEEE, 2021.
|
[12] |
吕川. 基于关键点检测的车道线识别及跟踪方法研究[D]. 咸阳: 西北农林科技大学, 2021.
LYU C. Research on lane line identification and tracking method based on key point detection[D]. Xianyang: Northwest Agriculture and Forestry University of Science and Technology, 2021. (in Chinese)
|
[13] |
KO Y, LEE Y, AZAM S, et al. Key points estimation and point instance segmentation approach for lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 8949-8958.
|
[14] |
NEWELL A, YANG K, DENG J. Stacked hour-glass networks for human pose estimation[C]. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands: Springer, 2016.
|
[15] |
TABELINI L, BERRIEL R, PAIXAO T M, et al. PolyLaneNet: lane estimation via deep polynomial regression[C]. 2020 25th International Conference on Pattern Recognition(ICPR), Milan, Italy: IEEE, 2021.
|
[16] |
FENG Z, GUO S, TAN X, et al. Rethinking effi-cient lane detection via curve modeling[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), New Orleans, LA, USA: IEEE, 2022.
|
[17] |
QIN Z, WANG H, LI X. Ultra fast structure-aware deep lane detection[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK: Springer, 2020.
|
[18] |
梁春婷. 基于深度学习的目标与车道线检测算法研究[D]: 广州: 华南理工大学, 2020.
LIANG C T. Research on deep learning based target and lane line detection algorithm[D]. Guangzhou: South China University of Technology, 2020. (in Chinese)
|
[19] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA: IEEE, 2016.
|
[20] |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA: IEEE, 2020.
|
[21] |
REDMON J, FARHADI A. YOLOv3: An incre-mental improvement[J]. arXiv preprint ar-Xiv: 1804. 02767, 2018.
|
[22] |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA: IEEE, 2009.
|