Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
LU Fei, ZHAO Erli, LIANG Xianyun. A Study on Longitudinal Collision Risk of Airplanes during Paired Approach Under the Influence of Positioning Error[J]. Journal of Transport Information and Safety, 2023, 41(4): 24-32. doi: 10.3963/j.jssn.1674-4861.2023.04.003
Citation: LU Fei, ZHAO Erli, LIANG Xianyun. A Study on Longitudinal Collision Risk of Airplanes during Paired Approach Under the Influence of Positioning Error[J]. Journal of Transport Information and Safety, 2023, 41(4): 24-32. doi: 10.3963/j.jssn.1674-4861.2023.04.003

A Study on Longitudinal Collision Risk of Airplanes during Paired Approach Under the Influence of Positioning Error

doi: 10.3963/j.jssn.1674-4861.2023.04.003
  • Received Date: 2023-05-17
    Available Online: 2023-11-23
  • Studying longitudinal collision risk of paired approach on closely spaced parallel runways (CSPRs) is crucial for assessing its safety, where positioning errors directly influence the longitudinal collision risk during the process. Given the lack of consideration on actual data fitting for positioning error distribution in previous studies, this study aims investigate the longitudinal collision risk during paired approach under the influence of actual data-fitted positioning error. According to the implementation process of paired approach, a kinematic model for the longitudinal spacing between aircrafts before and after pairing is established. In terms of positioning error during flight, statistical data of actual aircraft positioning errors are utilized to fit the distribution. Next, utilizing Automatic Dependent Surveillance-Broadcast (ADS-B) data, the longitudinal positioning error during the final approach phase is analyzed and fitted to identify the best-fitting distribution, that is, normal distribution. The collision risk between the aircraft fuselages in paired approach and the collision risk between the wake turbulence of lead aircraft and the fuselage of trailing aircraft are studied separately, and integral intervals for each collision risk model are determined. Based on the normal distribution and the movements of the paired aircrafts during paired approach, an assessment model for the longitudinal collision risk is established. Finally, data about the B737-800 aircraft at Shanghai Hongqiao Airport in December 2020 are collected for a case study. Simulations are conducted to analyze the changes in collision risk of fuselage Px1 and collision risk of wake turbulence Px2 over time under the initial longitudinal separations of 926 m and 2 778 m. Further, the relationship between different initial longitudinal separations and Px1 / Px2 or the maximum value of overall longitudinal collision risk. The results indicate that: ①when the initial longitudinal separation is 926 m, Px1 gradually decreases while Px2 increases over time, and Px1 is significantly greater than Px2. ②When the initial longitudinal separation is 2 778 m, the results are the opposite. ③ Px1 decreases while Px2 increases as the initial longitudinal separation increases. ④The overall longitudinal collision risk between the lead and trailing aircrafts decreases first and then increases with increasing initial longitudinal separation; ⑤when the initial longitudinal separation is smaller than 2 136 m, the longitudinal collision risk is primarily determined by the collision risk between the fuselages of lead and trailing aircrafts; when the initial longitudinal separation is larger than 2 136 m, it is determined by the collision risk between the wake turbulence of lead aircraft and the fuselage of trailing aircraft.

     

  • loading
  • [1]
    杨骁勇, 张辉, 刘尚豫, 等. 航空安全领域研究进展可视化综述[J]. 交通信息与安全, 2021, 39(3): 8-16. doi: 10.3963/j.jssn.1674-4861.2021.03.002

    YANG X Y, ZHANG H, LIU S Y, et al. A visualized review of research progress in aviation safety[J]. Journal of Transport Information and Safety, 2021, 39(3): 8-16. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.03.002
    [2]
    HAMMER J. Case study of paired approach procedure to closely spaced parallel runways[J]. Air Traffic Control Quarterly, 2000, 8(3): 223-252. doi: 10.2514/atcq.8.3.223
    [3]
    LANDRY S, PRICHETT A R. The safe zone for paired closely spaced parallel approaches: implications for procedures and automation[C]. 19th Digital Avionics Systems Conference. Philadelphia, PA, USA: IEEE, 2000.
    [4]
    CARPENTER B, KUCHAR J, CARPENTER B, et al. Probability-based collision alerting logic for closely spaced parallel approach[C]. 35th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AIAA, 1997.
    [5]
    BURNHAM D C, HALLOCK J N, GREENE G C. Wake turbulence limits on paired approaches to parallel runways[J]. Journal of Aircraft, 2002, 39(4): 630-637. doi: 10.2514/2.2975
    [6]
    EFTEKARI R R, HAMMER J B, HAVENS D A, et al. Feasibility analyses for paired approach procedures for closely spaced parallel runways[C]. 2011 Integrated Communications, Navigation, and Surveillance Conference. Herndon, VA, USA: IEEE, 2011.
    [7]
    TEO R, TOMLIN C J. Computing danger zones for provably safe closely spaced parallel approaches[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(3): 434-442. doi: 10.2514/2.5081
    [8]
    MCKISSICK B. Wake encounter analysis for aclosely spaced parallel runway paired approach simulation[C]. 9th AIAAAviation Technology, Integration, and Operations Conference (ATIO)and Aircraft Noise and Emissions Reduction Symposium(ANERS). Hilton Head, SC, USA: AIAA, 2009.
    [9]
    GEYER M, SOARES M, BARNES S, et al. RNAV(GPS)total system error models for use in wake encounter risk analysis of depenent paired approaches to closely-spaced parallelrunways[R]. Cambridge: John A. Volpe National Transportation Systems Center, 2014.
    [10]
    KENNETH L, STEPH P, PAUL H, et al. Paired approach flight demonstration: Planning and development activities[C]. 2018 Integrated Communications, Navigation & Surveillance Conference. Washington, D. C. USA: AIAA, 2018.
    [11]
    KENNETH L, MARY E M, CURT K, et al. Paired approach flight demonstration results[C]. 2019 Integrated Communications, Navigation & Surveillance Conference. Washington, D. C. USA: AIAA, 2019.
    [12]
    胡明华, 田勇, 李凯. 机场近距平行跑道进近方法研究[J]. 交通运输工程与信息学报, 2003, 1(1): 64-69, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200301009.htm

    HU M H, TIAN Y, LI K. Study of approach procedure to closely spaced parallel runways[J]. Journal of Transportation Engineering and Information, 2003, 1(1): 64-69, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200301009.htm
    [13]
    卢飞, 张兆宁, 魏志强, 等. 近距平行跑道配对进近纵向碰撞风险安全评估[J]. 中国安全科学学报, 2013, 23(8): 108-113. doi: 10.3969/j.issn.1003-3033.2013.08.018

    LU F, ZHANG Z N, WEI Z Q, et al. Longitud inal collision risk safety assessment of paired approach to closed spaced parallel runways[J]. China Safety Science Journal, 2013, 23 (8): 108-113. (in Chinese) doi: 10.3969/j.issn.1003-3033.2013.08.018
    [14]
    卢飞, 朱楠, 杨斯, 等. 近距平行跑道配对进近侧向碰撞风险评估[J]. 中国安全科学学报, 2016, 26(11): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201611019.htm

    LU F, ZHU N, YANG S, et al. Assessment of lateral collision risk in closed spaced parallel runways paired approach[J]. China Safety Science Journal, 2016, 26(11): 87-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201611019.htm
    [15]
    孙佳, 田勇. 近距平行跑道配对进近中的碰撞风险分析[J]. 哈尔滨商业大学学报(自然科学版), 2014, 30(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJS201402029.htm

    SUN J, TIAN Y. Collision risk analysis in close spaced parallel runway paired approaches[J]. Journal of Harbin University of Commerce, 2014, 30(2): 241-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLJS201402029.htm
    [16]
    牛夏蕾, 吕宗平, 张兆宁. 近距平行跑道配对进近最小跟驰距离的计算[J]. 航空计算技术, 2015, 45(4): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201504012.htm

    NIU X L, LYU Z P, ZHNAG Z N. Minimum in-trail distance for paired closely spaced parallel[J]. Aeronautical Computing Technique, 2015, 45(4): 46-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201504012.htm
    [17]
    吕宗平, 张兆宁, 牛夏蕾. 基于速度和导航误差的配对进近碰撞风险研究[J]. 航空计算技术, 2015, 45(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201506009.htm

    LYU Z P, ZHANG Z N, NIU X L. Collision risk safety assessment of paired approach basd on velocity error and positioning error[J]. Aeronautical Computing Technique, 2015, 45(6): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201506009.htm
    [18]
    卢飞, 滕景杰, 吴俊, 等. 尾流影响下的CSPRs配对进近侧向碰撞风险分析[J]. 中国安全科学学报, 2020, 30(2): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202002017.htm

    LU F, TENG J J, WU J, et al. Lateral collision risk of CSPRs paired approach under wake impact[J]. China Safety Science Journal, 2020, 30(2): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202002017.htm
    [19]
    卢飞, 滕景杰, 吴俊, 等. 尾涡流场影响下的CSPRs配对进近侧向碰撞动力学分析[J]. 中国安全科学学报, 2020, 30 (4): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202004004.htm

    LU F, TENG J J, WU J, et al. Lateral collision dynamics of CSPRs paired approach under influence of wake vortex field[J]. China Safety Science Journal, 2020, 30(4): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202004004.htm
    [20]
    田勇, 颜于杰, 万莉莉, 等. 近距平行跑道配对进近运行间隔研究[J]. 航空计算技术, 2015, 45(5): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201505004.htm

    TIAN Y, YAN Y J, WAN L L, et al. Research on separation of aircrafts for paired approaches to closely spaced parallel runways[J]. A eronautical Computing Technique, 2015, 45 (5): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ201505004.htm
    [21]
    中国民用航空局. 中国民用航空局令第190号: CCAR-93TM-R4[S]. 北京: 中国民用航空总局, 2007.

    Civil Aviation Administration of China. Decree of Civil Aviation Administration of China No. 190: CCAR-93TM-R4[S]. Beijing: Civil Aviation Administration of China, 2007. (in Chinese)
    [22]
    ROSSOW V J, MEYN L A. Relationship between vortex meander and ambient turbulence: AIAA-2006-7811[R]. Reston: AIAA, 2006.
    [23]
    KENNETH L, MARY E M, CURT K, et al. Paired approach flight demonstration results[C]. 2019 Integrated Communications, Navigation and Surveillance Conference, New York: AIAA, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (575) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return