Volume 41 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Tao, WANG Jin, LIU Bin, XU Niuqi. Crack Segmentation of Asphalt Pavement Images Based on Improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(6): 90-99. doi: 10.3963/j.jssn.1674-4861.2023.06.010
Citation: ZHANG Tao, WANG Jin, LIU Bin, XU Niuqi. Crack Segmentation of Asphalt Pavement Images Based on Improved U-net[J]. Journal of Transport Information and Safety, 2023, 41(6): 90-99. doi: 10.3963/j.jssn.1674-4861.2023.06.010

Crack Segmentation of Asphalt Pavement Images Based on Improved U-net

doi: 10.3963/j.jssn.1674-4861.2023.06.010
  • Received Date: 2023-07-03
    Available Online: 2024-04-03
  • To improve the segmentation accuracy of image-based asphalt pavement cracks, this paper proposes a strip-attention-u-net (SAU) network based on U-net. The network uses ResNeSt50 as a core feature learning struc-ture to effectively capture semantic information and local details. A channel enhanced strip pooling (CESP) module in the encode-decode skip connection is investigated to enhance the ability of learning crack features and better utilize residual connections. A convolutional block attention (CBA) module in the up sampling stage of the decoder is developed to mitigate feature losses caused by channel compression and preserve crack features. A loss function comprised by a Dice Loss and a Focal Loss function is performed to attract thin and small crack features. A publicly available EdmCrack600 dataset and an experimental BJCrack600 dataset (600 asphalt pavement images collected in an experiment) are used to evaluate the performance of the SAU network. Ablation experiments are conducted and the SAU network is compared with state-of-the-art networks (FCN, PSPNet, DeepLabv3, U-net, Attention U-net, and U-net++). For EdmCrack600 dataset, the proposed SAU network outperforms the state-of-the-art networks, with intersection over union (IoU) and F1 score of 50.89% and 83.59%, respectively. Regarding the BJCrack600 dataset, the SAU network demonstrates the best performance among the state-of-the-art networks, achieving IoU and F1 score of 69.69% and 90.90%, respectively. The study findings could provide more intelligent and efficient supports in making advanced decisions of road maintenance.

     

  • loading
  • [1]
    沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm

    SHA A M, TONG Z, GAO J. Recognition and measurement of road surface diseases based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31 (1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
    [2]
    杭伯安. 基于改进k-means算法的沥青路面裂缝分割方法[J]. 公路交通科技, 2023, 40(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202304001.htm

    HANG B A. Asphalt pavement crack segmentation method based on improved K-means algorithm[J]. Journal of Highway and Transportation Research and Development, 2023, 40 (4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202304001.htm
    [3]
    沈照庆, 彭余华, 舒宁. 一种基于SVM的路面影像损伤跨尺度识别方法[J]. 武汉大学学报(信息科学版), 2013, 38 (8): 993-997. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308025.htm

    SHEN Z Q, PENG Y H, SHU N. A SVM-based cross-scale damage recognition method for pavement image[J]. Geomatics and Information Science of Wuhan University, 2013, 38 (8): 993-997. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201308025.htm
    [4]
    张娟, 沙爱民, 孙朝云, 等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报, 2008(2): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802007.htm

    ZHANG J, SHA A M, SUN C Y, et al. Automatic pavement crack recognition based on phase grouping method[J]. China Journal of Highway and Transport, 2008(2): 39-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200802007.htm
    [5]
    OLIVEIRA H, CORREIA P L. CrackIT: An image processing toolbox for crack detection and characterization[C]. 2014 IEEE International Conference on Image Processing(ICIP), Paris, France: IEEE, 2014.
    [6]
    ZHANG A, WANG K C, LI B, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
    [7]
    ZHANG A, WANG K C, FEI Y, et al. Deep Learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet[J]. Journal of Computing in Civil Engineering, 2018, 32(5): 04018041. doi: 10.1061/(ASCE)CP.1943-5487.0000775
    [8]
    FEI Y, WANG K C, ZHANG A, et al. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-Ⅴ[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 273-284. doi: 10.1109/TITS.2019.2891167
    [9]
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
    [10]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[OL]. (2016-06-07)[2022-12-11]. http://arxiv.org/abs/1412.7062.
    [11]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848
    [12]
    CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[OL]. (2017-12-05)[2022-12-11]. http://arxiv.org/abs/1706.05587.
    [13]
    CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-Decoder with atrous separable convolution for semantic image segmentation[OL]. (2018-08-22)[2022-12-11]. http://arxiv.org/abs/1802.02611.
    [14]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[OL]. (2015-05-18)[2022-12-11]. http://arxiv.org/abs/1505.04597.
    [15]
    OKTAY O, SCHLEMPER J, FOLGOC LL, et al. Attention u-net: Learning where to look for the pancreas[OL]. (2018-05-20)[2023-08-27]. https://arxiv.org/abs/1804.03999.
    [16]
    ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: A nested u-net architecture for medical image segmentation[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, Granada, Spain: Springer, 2018.
    [17]
    YANG X, LI H, YU Y, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. doi: 10.1111/mice.12412
    [18]
    张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013

    ZHANG Z H, DENG Y X, ZHANG X X. Asphalt pavement disease extraction and classification method based on improved SegNet[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
    [19]
    史梦圆, 高俊钗. 改进U-Net算法的路面裂缝检测研究[J]. 自动化与仪表, 2022, 37(10): 52-55, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY202210011.htm

    SHI M Y, GAO J C. Research on pavement crack detection based on improved U-Net algorithm[J]. Automation & Instrumentation, 2022, 37(10): 52-55, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHY202210011.htm
    [20]
    GAO X, TONG B. MRA-UNet: balancing speed and accuracy in road crack segmentation network[J]. Signal, Image and Video Processing, 2023, 17(5): 2093-2100. doi: 10.1007/s11760-022-02423-9
    [21]
    惠冰, 李远见. 基于改进U型神经网络的路面裂缝检测方法[J]. 交通信息与安全, 2023, 41(1): 105-114, 131. doi: 10.3963/j.jssn.1674-4861.2023.01.011

    HUI B, LI Y J. Pavement crack detection method based on improved U-type neural network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114, 131. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.01.011
    [22]
    LIU C, ZHU C, XIA X, et al. FFEDN: feature fusion encoder decoder network for crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9) : 15546-15557. doi: 10.1109/TITS.2022.3141827
    [23]
    MEI Q, GÜL M. A cost effective solution for pavement crack inspection using cameras and deep neural networks[J]. Construction and Building Materials, 2020, 256: 119397. doi: 10.1016/j.conbuildmat.2020.119397
    [24]
    ZHONG J, ZHU J, HUYAN J, et al. Multi-scale feature fusion network for pixel-level pavement distress detection[J]. Automation in Construction, 2022, 141: 104436. doi: 10.1016/j.autcon.2022.104436
    [25]
    唐港庭, 尹超, 王绍平, 等. 基于改进GoogLeNet的沥青路面裂缝识别算法[J]. 智能计算机与应用, 2023, 13(3): 202-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ202303033.htm

    TANG G T, YIN C, WANG S P, et al. Asphalt pavement crack recognition algorithm based on improved GoogLeNet[J]. Intelligent Computer and Applications, 2023, 13(3): 202-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ202303033.htm
    [26]
    HOU Q, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[OL]. (2020-03-20)[2023-02-23]. http://arxiv.org/abs/2003.13328.
    [27]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[OL]. (2018-05-16)[2023-03-26]. https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.
    [28]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, America: IEEE, 2016.
    [29]
    WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]. The European Conference on Computer Vision, Munich, Germany: Springer, 2018.
    [30]
    LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced nlp tasks[OL]. (2020-08-29)[2023-06-21]. https://arxiv.org/abs/1911.02855v3.
    [31]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[OL]. (2018-02-07)[2023-06-28]. http://arxiv.org/abs/1708.02002.
    [32]
    RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77 (1): 157-173.
    [33]
    WU Y, CAO W, SAHIN S, et al. Experimental characterizations and analysis of deep learning frameworks[C]. 2018 IEEE International Conference on Big Data, Seattle, USA: IEEE, 2018. International Workshop, Granada, Spain: Springer, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (247) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return